Directional Subsurface Scattering Jeppe Revall Frisvad June 2020 Frisvad, J. R., Hachisuka, T., and Kjeldsen, T. K. Directional dipole model for subsurface scattering. ACM Transactions on Graphics 34(1), pp. 5:1-5:12, November 2014. Presented at SIGGRAPH 2015.
Materials (scattering and absorption of light) ◮ Optical properties (index of refraction, n ( λ ) = n ′ ( λ ) + i n ′′ ( λ ) ). ◮ Reflectance distribution functions, S ( x i , � ω i ; x o , � ω o ). BSSRDF n 1 x i x o n 2 ◮ The BSSRDF (Bidirectional Scattering-Surface Reflectance Distribution Function) describes surface and subsurface scattering.
An estimator for subsurface scattering ◮ The reflected radiance equation: � � L r ( x o , � ω o ) = S ( x i , � ω i ; x o , � ω o ) L i ( x i , � ω i ) cos θ i d ω i d A i . A 2 π ◮ Monte Carlo estimator: M N 1 S ( x i , p , � ω i , q ; x o , � ω o ) L i ( x i , p , � ω i , q ) cos θ i � � L r , N , M ( x o , � ω o ) = . pdf( x i , p )pdf( � ω i , q ) NM p =1 q =1 ◮ Common direction sampling pdf (cosine-weighted hemisphere): ω i , q ) = � ω i , q · � n i = cos θ i pdf( � . π π ◮ Common area sampling pdf (triangle mesh): 1 = 1 pdf( x i , p ) = pdf( △ )pdf( x i , p , △ ) = A △ . A ℓ A △ A ℓ
Sampling a cosine-weighted hemisphere (ambient occlusion) ◮ Material: ω o ) = ρ d ( x o ) S ( x i , � ω i ; x o , � δ ( x o − x i ) . π ◮ Sampler: ω i , q · � ω i , q ) = � n i = cos θ i pdf( � . π π ◮ Estimator: L r , N ( x o , � ω o ) N L i ( x o , � ω i , q ) cos θ i = 1 ρ d ( x o ) � π pdf( � ω i , q ) N q =1 M = ρ d ( x o ) 1 � L i ( x o , � ω i , q ) . N q =1
Sampling a triangle mesh (area lights, soft shadows) ◮ Material: ω o ) = ρ d ( x o ) S ( x i , � ω i ; x o , � δ ( x o − x i ) . π ◮ Sampler: x ℓ, q − x i � ω i , q = � x ℓ, q − x i � 1 pdf( x ℓ, q ) = pdf( △ )pdf( x ℓ, q , △ ) = A △ . A ℓ A △ ◮ Estimator: L r , N ( x o , � ω o ) N = ρ d ( x o ) 1 ω i , q ) V ( x ℓ, q , x o ) cos θ i cos θ ℓ � L e ( x ℓ, q , − � � x ℓ, q − x i � 2 A ℓ . π N q =1
Sampling for subsurface scattering � n i , 1 ◮ Material: d ω i , 1 S ( x i , � ω i ; x o , � ω o ) = . . . . x i , 1 A i , 1 ◮ Sampler: ω i , q ) = � ω i , q · � = cos θ i n i pdf( � . π π � ω i , 2 � n i , 2 � ω o x o pdf( x i , p ) = pdf( △ )pdf( x i , p , △ ) � n o = A △ 1 = 1 x i , 2 . A ℓ A △ A ℓ A i , 2 References - Frisvad, J. R., Hachisuka, T., and Kjeldsen, T. K. Directional dipole model for subsurface scattering. ACM Transactions on Graphics 34 (1), pp. 5:1–5:12, November 2014. Presented at SIGGRAPH 2015. - Dal Corso, A., and Frisvad, J. R. Point cloud method for rendering BSSRDFs. Technical Report, Technical University of Denmark, 2018.
Splitting up the BSSRDF ◮ Bidirectional Scattering-Surface Reflectance Distribution Function: S = S ( x i , � ω i ; x o , � ω o ) . ◮ Away from sources and boundaries, we can use diffusion. ◮ Splitting up the BSSRDF S = T 12 ( S (0) + S (1) + S d ) T 21 . where ◮ T 12 and T 21 are Fresnel transmittance terms (using � ω i , � ω o ). ◮ S (0) is the direct transmission part (using Dirac δ -functions). ◮ S (1) is the single scattering part (using all arguments). ◮ S d is the diffusive part (multiple scattering, using | x o − x i | ). ◮ We distribute the single scattering to the other terms using the delta-Eddington approximation: S = T 12 ( S δ E + S d ) T 21 , and generalize the model such that S d = S d ( x i , � ω i ; x o ).
Analytical models for subsurface scattering standard dipole directional dipole S ( x i , � ω i ; x o , � ω o ) S ( x i , � ω i ; x o , � ω o ) = T 12 ( � ω i )( S 1 + S d ( � x o − x i � )) T 21 ( � ω o ) . = T 12 ( � ω i )( S δ E + S d ( x i , � ω i ; x o )) T 21 ( � ω o ) . ◮ Directions ( � ω i , � ω o ) also require surface normals ( � n i , � n o ) to get angles ( θ i , θ o ). ◮ T 12 and T 21 are Fresnel transmittances. ◮ S 1 and S δ E are fully directional (depend on x i , � ω i , x o , � ω o , and normals).
Diffusion theory ◮ Think of multiple scattering as a diffusion process. ◮ In diffusion theory, we use quantities that describe the light field in an element of x volume of the scattering medium. ◮ Total flux, or fluence, is defined by d z y d y � φ ( x ) = L ( x , � ω ) d ω . d x 4 π x z ◮ We find an expression for φ by solving the diffusion equation ( D ∇ 2 − σ a ) φ ( x ) = − q ( x ) + 3 D ∇· Q ( x ) , where σ a and D are absorption and diffusion coefficients, while q and Q are zeroth and first order source terms.
Deriving a BSSRDF ◮ Assume that emerging light is diffuse due to a large number of scattering events: S d ( x i , � ω i ; x o , � ω o ) = S d ( x i , � ω i ; x o ). ◮ Integrating emerging diffuse radiance over outgoing directions, we find S d = C φ ( η ) φ − C E ( η ) D � n o ·∇ φ , Φ 4 π C φ (1 /η ) where ◮ Φ is the flux entering the medium at x i . ◮ � n o is the surface normal at the point of emergence x o . ◮ C φ and C E depend on the relative index of refraction η and are polynomial fits of different hemispherical integrals of the Fresnel transmittance. ◮ This connects the BSSRDF and the diffusion theory. ◮ To get an analytical model, we use a special case solution for the diffusion equation (an expression for φ ). ◮ Then, “all” we need to do is to find ∇ φ (do the math) and deal with boundary conditions (build a plausible model).
Point source diffusion or ray source diffusion directional dipole standard dipole ◮ Ray source diffusion ◮ Point source diffusion [Menon et al. 2005a; 2005b] [Bothe 1941; 1942] e − σ tr r Φ e − σ tr r Φ φ ( r , θ ) = φ ( r ) = , 4 π D r 4 π D r 1 + 3 D 1+ σ tr r � � cos θ , r where r = | x o − x i | and � σ tr = σ a / D is the effective where θ is the angle between the transport coefficient. refracted ray and x o − x i .
Diffusive part of the standard dipole S d ( r ) = α ′ � z r (1 + σ tr d r ) e − σ tr d r + z v (1 + σ tr d v ) e − σ tr d v � . 4 π 2 d 3 d 3 r v z -axis ◮ Distances: z ◮ z r = Λ . r real source ◮ z v = Λ + 4 AD . dr n r 2 + z 2 ◮ d r ( r ) = � r . r 2 + z 2 � ◮ d v ( r ) = v . n 2 ◮ Optical properties ( η = n 2 / n 1 , σ s , σ a , g ): z = 0 r n 1 ◮ Reduced scattering coefficient: σ ′ s = σ s (1 − g ) . ω i ω o ◮ Reduced extinction coefficient: σ ′ t = σ ′ s + σ a . dv incident light ◮ Reduced scattering albedo: α ′ = σ ′ s /σ ′ t . observer ◮ Transport mean free path: Λ = 1 /σ ′ t . -zv virtual source ◮ Diffusion coefficient: D = Λ / 3 . ◮ Transport coefficient: σ tr = � σ a / D . ◮ Reflection parameter: A ( η ) (ratio of polynomial fits).
Directional subsurface scattering when disregarding the boundary � � r 2 � 4 π 2 e − σ tr r S ′ 1 1 d ( x , � ω 12 , r ) = C φ ( η ) D + 3(1 + σ tr r ) x · � ω 12 4 C φ (1 /η ) r 3 � � � � (1 + σ tr r ) + 3 D 3(1+ σ tr r )+( σ tr r ) 2 � − C E ( η ) 3 D (1 + σ tr r ) � ω 12 · � n o − x · � ω 12 x · � , n o r 2 where C φ ( η ) and C E ( η ) are polynomial fits. ◮ Additional dependencies: ◮ Normal: � n o . ◮ Optical properites: η , D , σ tr . d ◮ Note the exponential term: e − σ tr r . ◮ Normal incidence: � ω 12 · � n o = ± 1 . ◮ Plane (half-space): x · � n o ≈ 0 . ◮ normal incidence on plane: x · � ω 12 ≈ 0 . ◮ r → � x o − x i � for � x o − x i � → ∞ .
Dipole configuration (method of mirror images) d ◮ We place the “real” ray source at the boundary and reflect it in an extrapolated boundary to place the “virtual” ray source. ◮ Distance to the extrapolated boundary [Davison 1958]: � d e = 2 . 131 D / 1 − 3 D σ a . ◮ In case of a refractive boundary ( η 1 � = η 2 ), the distance is A = 1 − C E ( η ) Ad e with . 2 C φ ( η )
Modified tangent plane d ◮ The dipole assumes a semi-infinite medium. ◮ We assume that the boundary contains the vector x o − x i and that it is perpendicular to the plane spanned by � n i and x o − x i . ◮ The normal of the assumed boundary plane is then i = x o − x i | x o − x i | × � n i × ( x o − x i ) n ∗ n ∗ � n i × ( x o − x i ) | , or � i = � n i if x o = x i . | � and the virtual source is given by n ∗ n ∗ n ∗ x v = x i + 2 Ad e � i , d v = | x v − x i | , � ω v = � ω 12 − 2( � ω 12 · � i ) � i .
Distance to the real source (handling the singularity) z -axis z r real source n dr d n 2 z = 0 n 1 r ω i ω o incident light dv observer -zv virtual source standard dipole directional dipole r 2 + z 2 � d r = r . d r = r ? ◮ Emergent radiance is an integral over z of a Hankel transform of a Green function which is Fourier transformed in x and y . ◮ Approximate analytic evaluation is possible if r is corrected to R 2 = r 2 + ( z ′ + d e ) 2 . ◮ The resulting model for z ′ = 0 corresponds to the standard dipole where z ′ = z r and d e is replaced by the virtual source.
Recommend
More recommend