dimensional crossover in ultracold fermi gases
play

Dimensional crossover in ultracold Fermi gases from Functional - PowerPoint PPT Presentation

Dimensional crossover in ultracold Fermi gases from Functional Renormalisation Bruno Faigle-Cedzich Cold Quantum Coffee Heidelberg University 8 th May 2018 Table of contents 1. Physics of ultracold atoms 2. BCS-BEC physics from Functional


  1. Dimensional crossover in ultracold Fermi gases from Functional Renormalisation Bruno Faigle-Cedzich Cold Quantum Coffee Heidelberg University 8 th May 2018

  2. Table of contents 1. Physics of ultracold atoms 2. BCS-BEC physics from Functional Renormalisation 3. Dimensional crossover 4. Conclusion 1

  3. Physics of ultracold atoms

  4. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2

  5. Ultracold: β„“/πœ‡ th ≲ 1 Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2

  6. Ultracold: β„“/πœ‡ th ≲ 1 Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2

  7. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2 Ultracold: β„“/πœ‡ th ≲ 1

  8. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2 Ultracold: β„“/πœ‡ th ≲ 1

  9. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2 Ultracold: β„“/πœ‡ th ≲ 1 π‘Š ext = ℏ πœ• 2 (𝑠/β„“ osc ) 2

  10. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2 Ultracold: β„“/πœ‡ th ≲ 1

  11. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2 Dilute: 𝑏 π‘œ 1/𝑒 β‰ͺ 1 Ultracold: β„“/πœ‡ th ≲ 1

  12. Scale hierarchy & Hamiltonian βƒ— 𝑏 𝑁 Μ‚ π‘œ = Μ‚ with 𝑦) 2 ] π‘œ( βƒ— 𝑏( βƒ— 𝑦 𝑏 † ( βƒ— 3 Effective Hamiltonian valid on scales ≫ β„“ vdW : Μ‚ adapted from Boettcher et al. Nuclear Physics B (2012) van der Waals interparticle thermal wavelength oscillator length interaction scale length of trap spacing 𝐼 = ∫ [ Μ‚ 𝑦) (βˆ’β„ βˆ‡ 2 2 𝑁 + π‘Š ext ( βƒ— 𝑦)) Μ‚ 𝑦) + 𝑕 Ξ› Μ‚ 𝑏 and 𝑕 Ξ› = 4 𝜌 ℏ 2 𝑏 † Μ‚

  13. Feshbach resonances 4 2-atom scattering πœ‰(𝐢) = Ξ”πœˆ (𝐢 βˆ’ 𝐢 0 ) Δ𝐢 𝐢 βˆ’ 𝐢 0 ) with πœ‰ β†’ 0 @ resonance Regal et al. 2006 BEC 𝑏 = 𝑏 bg (1 βˆ’ BCS

  14. Feshbach resonances 4 ) 𝐢 βˆ’ 𝐢 0 Δ𝐢 πœ‰(𝐢) = Ξ”πœˆ (𝐢 βˆ’ 𝐢 0 ) with πœ‰ β†’ 0 @ resonance adapted from Boettcher et al. Nuclear Physics B (2012) van der Waals oscillator length interparticle thermal wavelength interaction scale length of trap spacing Feshbach resonance Regal et al. 2006 BEC 𝑏 = 𝑏 bg (1 βˆ’ BCS

  15. The BCS-BEC crossover in 3D 5 two-component fermionic atoms

  16. The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions

  17. The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms

  18. The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms low π‘ˆ BCS-superfmuidity (condensation of Cooper pairs)

  19. The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms low π‘ˆ BCS-superfmuidity (condensation of Cooper pairs) low π‘ˆ BEC (Bose-Einstein condensate)

  20. The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms low π‘ˆ BCS-superfmuidity (condensation of Cooper pairs) low π‘ˆ BEC (Bose-Einstein condensate) Crossover (magnetic fjeld)

  21. The BCS-BEC crossover in 3D 5 Randeria Nature (2010) 𝑙 𝐺 = (3 𝜌 2 π‘œ) 1/3

  22. Features advantages β€’ couplings are tunable β€’ high precision experiments β€’ microphysics known challenges β€’ from microphysic laws to macroscopic observation including fmuctuations β€’ large couplings β€’ different effective degrees of freedom β€’ microphysics: single atoms & molecules β€’ macrophysics: bosonic collective degrees of freedom 6

  23. BCS-BEC physics from Functional Renormalisation

  24. The functional RG Flow equation (Wetterich 1993) Exact 1-loop equation 7 full quantum effective action bosons fermions IR UV πœ– 𝑙 Ξ“ 𝑙 = 1 2 STr [(Ξ“ (2) + 𝑆 𝑙 ) βˆ’1 πœ– 𝑙 𝑆 𝑙 ] βˆ‚ t Ξ“ k [ Ο†, ψ ] = 1 1 2

  25. Regulator and truncation dependence 8 dependent, yet Ξ“ is not β€’ during fmow all possible interactions may be produced β†’truncation needed adapted from Gies Springer (2012) β€’ fmow of Ξ“ 𝑙 regulator Theory space β€’ πœ– 𝑒 Ξ“ (π‘œ) depends on Ξ“ (π‘œ+1) and Ξ“ (π‘œ+2)

  26. Action and truncation Microscopic action 𝑇 = ∫ π‘Œ 2 ) ] with β€’ πœ” : Grassmann fjeld β€’ 𝜚 : bosonic fjeld consisting of two atoms β€’ πœ‰ : detuning β€’ 𝜐 : Euclidean time on torus with circumference 1/π‘ˆ β€’ 𝜈 : chemical potential 9 [πœ” βˆ— (πœ– 𝜐 βˆ’ βˆ‡ 2 βˆ’ 𝜈) πœ” + 𝜚 βˆ— (πœ– 𝜐 βˆ’ βˆ‡ 2 2 + πœ‰ βˆ’ 2𝜈) 𝜚 βˆ’ β„Ž (𝜚 βˆ— πœ” 1 πœ” 2 βˆ’ 𝜚 πœ” βˆ— 1 πœ” βˆ—

  27. Units Chosen such that: Consequences: unit 𝑙 𝐺 β€’ 2 𝑁 = 1 : [ momentum ] = [ energy ] (equiv. 𝑑 = 1 ) i.e. [𝑒] = π‘š 2 , [ βƒ— β†’ canonical dimensions differ from relativistic QFT! 10 ℏ = 𝑙 𝐢 = 2 𝑁 = 1 β€’ ℏ = 1 : [ momentum ] = [ length ] βˆ’1 with typical momentum β€’ 𝑙 𝐢 = 1 : [ temperature ] = [ energy ] π‘ž] = π‘š βˆ’1 , [π‘ˆ] = π‘š βˆ’2 , [𝜈] = π‘š βˆ’2 , [π‘œ] = π‘š βˆ’3 .

  28. Truncation : derivative expansion β€’ vertices are expanded in powers of the momenta 𝜍 = 𝜚 βˆ— 𝜚 (2nd order phase transition) 11 β€’ effective average potential 𝑉 𝑙 @ least to 2nd order in F B ) βˆ’ 1 = βˆ‚ t ( + M ) βˆ’ 1 = βˆ‚ t (

  29. 12 πœ” , 𝜚 = 𝐡 1/2 𝜚 𝛽 𝑛 𝑛=1 βˆ‘ 𝑁 𝑣 π‘œ π‘œ=1 βˆ‘ 𝑂 𝑉(𝜍) = and 𝜚 Ξ“ kin [πœ”, 𝜚] = ∫ 𝜚 Μ… Μ… π‘Œ π‘Œ [ βˆ‘ 𝜏={1,2} πœ” βˆ— 2βˆ‡ 2 ) 𝜚] πœ” Ξ“ int [πœ”, 𝜚] = ∫ 2 ) ] with β€’ renormalised fjelds: πœ” = 𝐡 1/2 Ansatz for effective action Ξ“ 𝑙 = Ξ“ kin + Ξ“ int 𝜏 (𝑇 πœ” πœ– 𝜐 βˆ’ βˆ‡ 2 βˆ’ 𝜈) πœ” 𝜏 + 𝜚 βˆ— (𝑇 𝜚 πœ– 𝜐 βˆ’ 1 [𝑉 (𝜚 βˆ— 𝜚) βˆ’ β„Ž (𝜚 βˆ— πœ” 1 πœ” 2 βˆ’ 𝜚 πœ” βˆ— 1 πœ” βˆ— β€’ 𝑇 πœ”,𝜚 = π‘Ž πœ”,𝜚 /𝐡 πœ”,𝜚 β€’ anomalous dimensions: πœƒ πœ”,𝜚 = βˆ’ πœ– 𝑒 log 𝐡 πœ”,𝜚 π‘œ! (𝜍 βˆ’ 𝜍 0 ) π‘œ βˆ’ π‘œ 𝑙 (𝜈 βˆ’ 𝜈 0 ) + 𝑛! (𝜈 βˆ’ 𝜈 0 ) (𝜍 βˆ’ 𝜍 0 ) 𝑛 , 𝑣 1 = 𝑛 2

  30. Regularisation scheme IR-regularisation: lim lim Litim-type regulator: β†’analytic evaluation of Matsubara sums 13 π‘ž 2 /𝑙 2 β†’0 𝑆 𝑙 (π‘ž 2 )/𝑙 2 > 0, 𝑙 2 /π‘ž 2 β†’0 𝑆 𝑙 (π‘ž 2 ) β†’ 0 𝑆 𝜚,𝑙 (𝑅) = 𝑆 𝜚,𝑙 (π‘Ÿ 2 ) = (𝑙 2 βˆ’ π‘Ÿ 2 2 ) πœ„ (𝑙 2 βˆ’ π‘Ÿ 2 2 ) 𝑆 πœ”,𝑙 (𝑅) = 𝑆 πœ”,𝑙 (π‘Ÿ 2 ) = [𝑙 2 sgn (π‘Ÿ 2 βˆ’ 𝜈) βˆ’ (π‘Ÿ 2 βˆ’ 𝜈)] πœ„ (𝑙 2 βˆ’ |π‘Ÿ 2 βˆ’ 𝜈|)

  31. UV renormalisation Connecting to experiment β€’ @ π‘ˆ = 0 : connect to correct vacuum physics at unitarity Thus: 𝑏 = 𝑏(𝐢) = β„Ž 2 Ξ› 14 β€’ initial condition for 𝑉 𝑙 : 𝑉 Ξ› (𝜍) = (πœ‰ Ξ› βˆ’ 2 𝜈) 𝜍 ( 𝑏 βˆ’1 = 0 ), i.e. 𝑛 2 𝜚,𝑙=0 = 0 = 𝜈 8 𝜌 πœ‰(𝐢) , πœ‰(𝐢) = πœ‰ Ξ› βˆ’ πœ€πœ‰(Ξ›)

  32. Universality Μƒ 𝑛 2 β€’ existence of FPs in RG fmow: macrophysics independent of πœ‡ 𝜚,βˆ— β„Ž 2 initial values β€’ loss of memory of microphysics: start at the FP values the microphysics 15 Ξ› = 6 𝜌 2 Ξ›, πœ‡ 𝜚,Ξ› = Ξ› , 𝜚,Ξ› = πœ‰ Ξ› βˆ’ 2 𝜈, π‘œ Ξ› = 𝜈 3/2 𝑇 𝜚,Ξ› = 1, 𝛽 Ξ› = βˆ’2, 3 𝜌 2 Θ(𝜈).

  33. 3D BCS-BEC crossover π‘ˆ > 0 : 16 π‘ˆ = 0 : (with 𝑑 = 𝑙 𝐺 𝑏 ) 1.0 2.5 0.8 2.0 0.6 1.5 0.4 1.0 0.2 0.5 0.0 0.0 - 4 - 2 0 2 4 - 4 - 2 0 2 4 0.35 2.0 0.30 0.25 1.5 0.20 1.0 0.15 0.10 0.5 0.05 0.0 0.00 - 4 - 2 0 2 4 - 4 - 2 0 2 4

  34. Dimensional crossover

  35. Why are quasi-2D systems interesting? β€’ promising materials: graphene, high π‘ˆ 𝑑 -superconductors, layered semiconductors β€’ pronounced infmuence of quantum fmuctuations β€’ experimental accessibility via highly anisotropic trapping potentials β€’ for insuffjcient anisotropy β†’dimensional crossover 17 β†’disentangle dimensionality from many-body physics ZΓΌrn et al. PRL (2015)

  36. Boundary conditions Ξ¨(𝜐, 𝑦, 𝑧, 𝑨 = 0) = Ξ¨(𝜐, 𝑦, 𝑧, 𝑨 = 𝑀) (2 𝜌) π‘’βˆ’1 𝑒 π‘’βˆ’1 π‘Ÿ ∫ 𝑙 π‘œ 𝑒 𝑒 π‘Ÿ ∫ β€’ spatial Matsubara sum π‘œ ∈ β„• β€’ delimit 𝑨 -direction by potential well of length 𝑀 β†’quantisation of momentum in 𝑨 -direction: β€’ impose periodic boundary conditions: Ξ¨ = {πœ”, 𝜚} else ∞ 0 ≀ 𝑨 ≀ 𝑀 0 ⎩ { ⎨ { ⎧ π‘Š box (𝑨) = 18 π‘Ÿ 𝑨 β†’ 𝑙 π‘œ = 2 𝜌 π‘œ 𝑀 , (2 𝜌) 𝑒 = 1 𝑀 βˆ‘

Recommend


More recommend