Dimensional crossover in ultracold Fermi gases from Functional Renormalisation Bruno Faigle-Cedzich Cold Quantum Coffee Heidelberg University 8 th May 2018
Table of contents 1. Physics of ultracold atoms 2. BCS-BEC physics from Functional Renormalisation 3. Dimensional crossover 4. Conclusion 1
Physics of ultracold atoms
Scales β’ interparticle spacing π = β βπ β’ thermal wavelength π th β’ van der Waals length π vdW β’ oscillator length β osc β’ scattering length π 2
Ultracold: β/π th β² 1 Scales β’ interparticle spacing π = β βπ β’ thermal wavelength π th β’ van der Waals length π vdW β’ oscillator length β osc β’ scattering length π 2
Ultracold: β/π th β² 1 Scales β’ interparticle spacing π = β βπ β’ thermal wavelength π th β’ van der Waals length π vdW β’ oscillator length β osc β’ scattering length π 2
Scales β’ interparticle spacing π = β βπ β’ thermal wavelength π th β’ van der Waals length π vdW β’ oscillator length β osc β’ scattering length π 2 Ultracold: β/π th β² 1
Scales β’ interparticle spacing π = β βπ β’ thermal wavelength π th β’ van der Waals length π vdW β’ oscillator length β osc β’ scattering length π 2 Ultracold: β/π th β² 1
Scales β’ interparticle spacing π = β βπ β’ thermal wavelength π th β’ van der Waals length π vdW β’ oscillator length β osc β’ scattering length π 2 Ultracold: β/π th β² 1 π ext = β π 2 (π /β osc ) 2
Scales β’ interparticle spacing π = β βπ β’ thermal wavelength π th β’ van der Waals length π vdW β’ oscillator length β osc β’ scattering length π 2 Ultracold: β/π th β² 1
Scales β’ interparticle spacing π = β βπ β’ thermal wavelength π th β’ van der Waals length π vdW β’ oscillator length β osc β’ scattering length π 2 Dilute: π π 1/π βͺ 1 Ultracold: β/π th β² 1
Scale hierarchy & Hamiltonian β π π Μ π = Μ with π¦) 2 ] π( β π( β π¦ π β ( β 3 Effective Hamiltonian valid on scales β« β vdW : Μ adapted from Boettcher et al. Nuclear Physics B (2012) van der Waals interparticle thermal wavelength oscillator length interaction scale length of trap spacing πΌ = β« [ Μ π¦) (ββ β 2 2 π + π ext ( β π¦)) Μ π¦) + π Ξ Μ π and π Ξ = 4 π β 2 π β Μ
Feshbach resonances 4 2-atom scattering π(πΆ) = Ξπ (πΆ β πΆ 0 ) ΞπΆ πΆ β πΆ 0 ) with π β 0 @ resonance Regal et al. 2006 BEC π = π bg (1 β BCS
Feshbach resonances 4 ) πΆ β πΆ 0 ΞπΆ π(πΆ) = Ξπ (πΆ β πΆ 0 ) with π β 0 @ resonance adapted from Boettcher et al. Nuclear Physics B (2012) van der Waals oscillator length interparticle thermal wavelength interaction scale length of trap spacing Feshbach resonance Regal et al. 2006 BEC π = π bg (1 β BCS
The BCS-BEC crossover in 3D 5 two-component fermionic atoms
The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions
The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms
The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms low π BCS-superfmuidity (condensation of Cooper pairs)
The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms low π BCS-superfmuidity (condensation of Cooper pairs) low π BEC (Bose-Einstein condensate)
The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms low π BCS-superfmuidity (condensation of Cooper pairs) low π BEC (Bose-Einstein condensate) Crossover (magnetic fjeld)
The BCS-BEC crossover in 3D 5 Randeria Nature (2010) π πΊ = (3 π 2 π) 1/3
Features advantages β’ couplings are tunable β’ high precision experiments β’ microphysics known challenges β’ from microphysic laws to macroscopic observation including fmuctuations β’ large couplings β’ different effective degrees of freedom β’ microphysics: single atoms & molecules β’ macrophysics: bosonic collective degrees of freedom 6
BCS-BEC physics from Functional Renormalisation
The functional RG Flow equation (Wetterich 1993) Exact 1-loop equation 7 full quantum effective action bosons fermions IR UV π π Ξ π = 1 2 STr [(Ξ (2) + π π ) β1 π π π π ] β t Ξ k [ Ο, Ο ] = 1 1 2
Regulator and truncation dependence 8 dependent, yet Ξ is not β’ during fmow all possible interactions may be produced βtruncation needed adapted from Gies Springer (2012) β’ fmow of Ξ π regulator Theory space β’ π π’ Ξ (π) depends on Ξ (π+1) and Ξ (π+2)
Action and truncation Microscopic action π = β« π 2 ) ] with β’ π : Grassmann fjeld β’ π : bosonic fjeld consisting of two atoms β’ π : detuning β’ π : Euclidean time on torus with circumference 1/π β’ π : chemical potential 9 [π β (π π β β 2 β π) π + π β (π π β β 2 2 + π β 2π) π β β (π β π 1 π 2 β π π β 1 π β
Units Chosen such that: Consequences: unit π πΊ β’ 2 π = 1 : [ momentum ] = [ energy ] (equiv. π = 1 ) i.e. [π’] = π 2 , [ β β canonical dimensions differ from relativistic QFT! 10 β = π πΆ = 2 π = 1 β’ β = 1 : [ momentum ] = [ length ] β1 with typical momentum β’ π πΆ = 1 : [ temperature ] = [ energy ] π] = π β1 , [π] = π β2 , [π] = π β2 , [π] = π β3 .
Truncation : derivative expansion β’ vertices are expanded in powers of the momenta π = π β π (2nd order phase transition) 11 β’ effective average potential π π @ least to 2nd order in F B ) β 1 = β t ( + M ) β 1 = β t (
12 π , π = π΅ 1/2 π π½ π π=1 β π π£ π π=1 β π π(π) = and π Ξ kin [π, π] = β« π Μ Μ π π [ β π={1,2} π β 2β 2 ) π] π Ξ int [π, π] = β« 2 ) ] with β’ renormalised fjelds: π = π΅ 1/2 Ansatz for effective action Ξ π = Ξ kin + Ξ int π (π π π π β β 2 β π) π π + π β (π π π π β 1 [π (π β π) β β (π β π 1 π 2 β π π β 1 π β β’ π π,π = π π,π /π΅ π,π β’ anomalous dimensions: π π,π = β π π’ log π΅ π,π π! (π β π 0 ) π β π π (π β π 0 ) + π! (π β π 0 ) (π β π 0 ) π , π£ 1 = π 2
Regularisation scheme IR-regularisation: lim lim Litim-type regulator: βanalytic evaluation of Matsubara sums 13 π 2 /π 2 β0 π π (π 2 )/π 2 > 0, π 2 /π 2 β0 π π (π 2 ) β 0 π π,π (π ) = π π,π (π 2 ) = (π 2 β π 2 2 ) π (π 2 β π 2 2 ) π π,π (π ) = π π,π (π 2 ) = [π 2 sgn (π 2 β π) β (π 2 β π)] π (π 2 β |π 2 β π|)
UV renormalisation Connecting to experiment β’ @ π = 0 : connect to correct vacuum physics at unitarity Thus: π = π(πΆ) = β 2 Ξ 14 β’ initial condition for π π : π Ξ (π) = (π Ξ β 2 π) π ( π β1 = 0 ), i.e. π 2 π,π=0 = 0 = π 8 π π(πΆ) , π(πΆ) = π Ξ β ππ(Ξ)
Universality Μ π 2 β’ existence of FPs in RG fmow: macrophysics independent of π π,β β 2 initial values β’ loss of memory of microphysics: start at the FP values the microphysics 15 Ξ = 6 π 2 Ξ, π π,Ξ = Ξ , π,Ξ = π Ξ β 2 π, π Ξ = π 3/2 π π,Ξ = 1, π½ Ξ = β2, 3 π 2 Ξ(π).
3D BCS-BEC crossover π > 0 : 16 π = 0 : (with π = π πΊ π ) 1.0 2.5 0.8 2.0 0.6 1.5 0.4 1.0 0.2 0.5 0.0 0.0 - 4 - 2 0 2 4 - 4 - 2 0 2 4 0.35 2.0 0.30 0.25 1.5 0.20 1.0 0.15 0.10 0.5 0.05 0.0 0.00 - 4 - 2 0 2 4 - 4 - 2 0 2 4
Dimensional crossover
Why are quasi-2D systems interesting? β’ promising materials: graphene, high π π -superconductors, layered semiconductors β’ pronounced infmuence of quantum fmuctuations β’ experimental accessibility via highly anisotropic trapping potentials β’ for insuffjcient anisotropy βdimensional crossover 17 βdisentangle dimensionality from many-body physics ZΓΌrn et al. PRL (2015)
Boundary conditions Ξ¨(π, π¦, π§, π¨ = 0) = Ξ¨(π, π¦, π§, π¨ = π) (2 π) πβ1 π πβ1 π β« π π π π π β« β’ spatial Matsubara sum π β β β’ delimit π¨ -direction by potential well of length π βquantisation of momentum in π¨ -direction: β’ impose periodic boundary conditions: Ξ¨ = {π, π} else β 0 β€ π¨ β€ π 0 β© { β¨ { β§ π box (π¨) = 18 π π¨ β π π = 2 π π π , (2 π) π = 1 π β
Recommend
More recommend