differential cohomology and topological actions
play

Differential cohomology and topological actions Ben Gripaios - PowerPoint PPT Presentation

Differential cohomology and topological actions Ben Gripaios Cambridge 28.x.20 with Joe Davighi and Oscar Randal-Williams goal and motivations examples differential cohomology Goal: construct and classify topological actions in


  1. Differential cohomology and topological actions Ben Gripaios Cambridge 28.x.20 with Joe Davighi and Oscar Randal-Williams

  2. • goal and motivations • examples • differential cohomology

  3. Goal: construct and classify topological actions in field theory (with/without global/local symmetry)

  4. Lowbrow: Topological actions are everywhere e.g. tennis rackets

  5. • particles in EM fields • strong interactions (quarks, gluons, mesons) • quantum hall systems (Chern-Simons) • SPT phases • QFT anomalies

  6. Many examples, many constructions; isn’t classification hopeless?

  7. Clue 1: It’s possible in dim 0

  8. Clue 2: In any dim, get an abelian group

  9. • rigid body • Landau levels • solenoid • Dirac monopole

  10. Clue 3: With the right construction, classification should be easy

  11. Given a classification can start doing physics e.g. strong dynamics via anomaly matching Some mysteries, even in QM!

  12. Highbrow motivation: the bigger picture . . .

  13. In 10 2 yr, we’ve come a long way with � � d 4 x L [ f , ∂ x f ] D [ f ( x )] e 2 π i (plus experiment) but deep down we know it isn’t the right way to do QFT.

  14. We seem to be having our own ‘Michelson-Morley moment’

  15. So what is the right way to do QFT?

  16. QFT = QM+ locality + symmetry

  17. QFT = QM + extended locality + higher symmetry + smoothness

  18. QFT = QM + extended locality + higher symmetry + smoothness • amplitudes? • operator algebras? • geometry (higher bordism categories)?

  19. Geometric approach Segal, Kontsevich, Atiyah 88 e.g. Lurie 10, Stolz-Teichner 11, Freed-Hopkins 16

  20. Today: baby version of geometric approach

  21. Some (ad hoc) examples.

  22. Example 1. Particle motion with monopole on S 2 Poincaré 95, Dirac 31, Witten 83 x ∝ x ∧ ˙ x , | x | = 1 ¨

  23. Example 1. Particle motion on S 2 with monopole What if I gauge rotational symmetry? Witten condition fails Witten 83; Figueroa-O’Farrill-Stanciu 94

  24. Example 2. Particle in crystal with uniform field Translational symmetry? Manton 83 Weinberg-d’Hoker condition fails Weinberg-d’Hoker 95, Davighi-BG 18

  25. Example 3. Particle motion in solenoid on S 1 Aharonov-Bohm 59 What if I try to gauge the symmetry? cf. Cordova, Freed, Lam, & Seiberg 19

  26. Example 3 cont. Particle motion in solenoid on S 1 : ungauging R / Z Z R

  27. Example 1 cont. Particle motion with monopole on S 2 : ungauging Z Z Z

  28. So funny things happen in ad hoc constructions. Let’s do it properly via differential cohomology

  29. Fix target X and spacetime dimension n ; want to define an action sending • any source M (a closed, oriented, n -manifold) • any smooth map f : M → X to exp2 π iS X ( M , f ) ∈ U ( 1 ) .

  30. Global symmetry: Add a G -action on X ; seek invariant actions

  31. Local symmetry: Add a G -bundle P → M with connection A , replace f : X → M by equivariant f : P → X ; seek invariant actions

  32. (Ordinary) differential cohomology Cheeger & Simons 73; Deligne 71. .. Alvarez 85; Gawedzki 88; Brylinski 93; Freed, Moore, & Segal 06 ...

  33. Axiomatic definition: H ˚´ 1 p X ; R { Z q H ˚ p X ; Z q B j ch p H ˚´ 1 p X ; R q H ˚ p X ; Z q H ˚ p X ; R q ι curv Ω ˚´ 1 p X q{ Ω ˚´ 1 p X q Z Ω ˚ p X q Z d Simons & Sullivan 07

  34. To get the action, pull h ∈ � H n + 1 ( X ) back along f : X → M : H n p M ; R { Z q 0 B – p H n p M ; R q H n ` 1 p M ; Z q 0 – Ω n p M q{ Ω n p M q Z 0 d

  35. In low degrees • Deg 0: maps X → Z • Deg 1: maps X → U ( 1 ) • Deg 2: U ( 1 ) -principle bundles on X with connection (up to iso.)

  36. Global symmetry: invariant differential cohomology

  37. Definition: take invariants; Characterization: H ˚´ 1 p X ; R { Z q G H ˚ p X ; Z q G B j ch p H ˚´ 1 p X ; R q G H ˚ p X ; Z q G H ˚ p X ; R q G ι curv r Ω ˚´ 1 p X q{ Ω ˚´ 1 p X q Z s G Ω ˚ p X q G d Z (invariants functor is only left-exact)

  38. Local symmetry: equivariant differential cohomology Thom-Kuebel 15; Redden 16

  39. Axiomatic definition: H ˚´ 1 p X ; R { Z q H ˚ G p X ; Z q B G j ch p H ˚´ 1 p X ; R q H ˚ G p X ; Z q H ˚ G p X ; R q G ι curv Ω ˚´ 1 G p X q{ Ω ˚´ 1 G p X q Z Ω ˚ G p X q Z d G Redden 16

  40. E.g. pure gauge theory ( X = pt ): Ω 2 k + 1 ( pt ) = 0 so get G H n + 1 ( BG , Z ) or H n ( BG , R / Z ) for n odd or even. Dijkgraaf-Witten 90

  41. There is an ungauging map: EDC → IDC The cokernel tells us the ungaugeable global symmetries e.g. odd Dirac monopole, fermionic rigid body

  42. Summary • Topological actions not so occult • Not quite a formula, but a machine • New tool for strong dynamics • More actions from differential bordism • Categorify for extended locality and higher symmetry

  43. H ˚´ 1 p X ; R { Z q H ˚ p X ; Z q B j ch p H ˚´ 1 p X ; R q H ˚ p X ; Z q H ˚ p X ; R q ι curv Ω ˚´ 1 p X q{ Ω ˚´ 1 p X q Z Ω ˚ p X q Z d Simons & Sullivan 07

Recommend


More recommend