EnKF Kovachki & Stuart Derivative-Free Methods for Machine Learning Tasks Inverse Problem Formulations The Ensemble Kalman Filter Ensemble Kalman Filter Numerics Nikola B. Kovachki 1 Andrew M. Stuart 1 1 Computational and Mathematical Sciences California Institute of Technology Inverse Problems and Machine Learning February 9-11th, 2018
Table of Contents EnKF Kovachki & Stuart Inverse Problem Formulations 1 Inverse Problem Formulations Ensemble Kalman Filter Numerics 2 Ensemble Kalman Filter 3 Numerics
Table of Contents EnKF Kovachki & Stuart Inverse Problem Formulations 1 Inverse Problem Formulations Ensemble Kalman Filter Numerics 2 Ensemble Kalman Filter 3 Numerics
Supervised Learning EnKF • Data : { ( x j , y j ) } N j =1 with x j ∈ X , y j ∈ Y and X , Y Hilbert spaces. Kovachki & • Find : G ( u |· ) : X → Y for parameter u ∈ U consistent with the data. Stuart • Concatenate : Inverse Problem Formulations y = G( u | x) + η Ensemble where G( ·| x) : U → Y N and η is model or data error. Kalman Filter Numerics • Losses : Φ( u ; x , y) N 1 � 2 � y − G( u | x) � 2 Y N + R ( u ) or − � y j , log G ( u | , x j ) � Y + R ( u ) j =1 • Standard Solution (SGD) : u = −∇ u Φ( u ; x , y); ˙ u (0) = u 0 u ∗ = u ( T )
Example EnKF • Classification : Kovachki & Stuart Inverse Problem Formulations Ensemble Kalman Filter Numerics • NLP :
Online Supervised Learning EnKF • Data : As before possibly with N = ∞ . Kovachki & • Dynamic : For j = 0 , 1 , 2 , . . . Stuart Inverse Problem u j +1 = u j Formulations Ensemble y j +1 = G ( u j +1 | x j +1 ) + η j +1 Kalman Filter Numerics • Find : u j given Y j = { y k } j k =1 and update sequentially. • Loss : Φ( u ; x , y ) 1 2 � y − G ( u | x ) � 2 Y + R ( u ) or − � y , log G ( u | x ) � Y + R ( u ) • Standard Solution (OGD) : u = −∇ u Φ( u ; x j +1 , y j +1 ); ˙ u (0) = u j u j +1 = u ( T j )
Example EnKF • Model Improvement : Kovachki & Stuart Inverse Problem Formulations Ensemble Kalman Filter Numerics • Stream Data :
Semi-Supervised Learning (on a graph) EnKF Kovachki & Bertozzi and Flenner 2012. (MMS) Stuart Bertozzi, Luo, Stuart, Zygalakis 2017. (preprint) Inverse Problem • Data : { x j } j ∈ Z and { y j } j ∈ Z ′ with Z ′ ⊂ Z and | Z ′ | ≪ | Z | . Formulations • Find : u : Z → R m such that Ensemble Kalman Filter Numerics ∀ j ∈ Z ′ y j = S ( u ( j )) + η j S : R m → Y is pre-specified. • Loss : 1 � � y j − S ( u ( j )) � 2 Φ( u ; x , y) = Y + R ( u ; x) 2 γ 2 j ∈ Z ′ • Standard Solution : Probit (convex optimization) or MCMC (Bayesian).
Example EnKF Kovachki & Stuart • Clustering : Inverse Problem Formulations Ensemble Kalman Filter Numerics
Table of Contents EnKF Kovachki & Stuart Inverse Problem Formulations 1 Inverse Problem Formulations Ensemble Kalman Filter Numerics 2 Ensemble Kalman Filter 3 Numerics
Continous-time EnKF EnKF Kantas, Beskos, Jasra, (2014) (JUQ) Kovachki & Iglesias, Law and Stuart, 2013. (IP) Stuart • Inverse Problem : Inverse Problem η ∼ N (0 , Γ) y = G( u ) + η Formulations Ensemble u ∼ µ 0 ( u ) Kalman Filter Numerics • Sequential Monte Carlo (SMC) : µ n ( du ) ∝ exp( − nh Φ( u ; y )) µ 0 ( du ) • Approximate SMC (EnKF) : u ( j ) n +1 = u ( j ) n + C uw ( u n )( C ww ( u n ) + Γ) − 1 (y − G( u ( j ) n )) • Continous-time : Γ �→ 1 h Γ, h → 0 J u ( j ) = − 1 � � G( u ( k ) ) − ¯ G , G( u ( j ) ) − y � Γ u ( k ) ˙ J k =1
Approximate Natural Gradient Decent EnKF Amari, 1998. (NC) Kovachki & Stuart • Linear : G( · ) = A · u ( j ) = − C ( u ) ∇ u Φ( u ( j ) , y) ˙ Inverse Problem Formulations where Ensemble Kalman Filter J Numerics C ( u ) = 1 Φ( u , y) = 1 ( u ( j ) − ¯ u ) ⊗ ( u ( j ) − ¯ � 2 � y − Au � 2 u ); Γ J j =1 • Natural Gradient Decent : u = − F − 1 ( u ) ∇ u Φ( u , y) ˙ • Cram´ er-Rao : u ] � F − 1 ( u ) Cov[ˆ
Long-time Linear Behavior EnKF Schillings and Stuart 2017. (SINUM) Kovachki & Stuart Theorem Inverse Problem Suppse G( · ) = A · and that y is the image of a truth u † under A. Define Formulations r ( j ) ( t ) = u ( j ) ( t ) − u † then (under some assumptions) Ensemble Kalman Filter Numerics Ar ( j ) ( t ) = Ar ( j ) � ( t ) + Ar ( j ) ⊥ ( t ) with Ar ( j ) u (0)) } and Ar ( j ) ∈ span { A ( u ( j ) (0) − ¯ ⊥ ∈ span { A ( u ( j ) (0) − ¯ u (0)) } ⊥ . � Furthermore Ar ( j ) � ( t ) → 0 as t → ∞ Ar ( j ) ⊥ ( t ) = Ar (1) ⊥ (0) ∀ t ≥ 0 .
Arbitrary Loss EnKF • Non-linear : Kovachki & u ( j ) = − C uw ( u )Γ − 1 (G( u ( j ) ) − y ) Stuart ˙ = − C uw ( u ) ∇ z Ψ(G( u ( j ) ) , y) Inverse Problem Formulations J Ensemble = − 1 � � G( u ( k ) ) − ¯ Kalman Filter G , ∇ z Ψ(G( u ( j ) ) , y) � u ( k ) J Numerics k =1 J C uw ( u ) = 1 Ψ(z , y) = 1 ( u ( j ) − ¯ � u ) ⊗ (G( u ( j ) ) − ¯ 2 � y − z � 2 G); Γ J j =1 • Concatenate : u = [ u (1) , . . . , u ( J ) ] u = − D ( u ) u ˙ where D ( jk ) ( u ) = 1 J � G( u ( k ) ) − ¯ G , ∇ z Ψ(G( u ( j ) ) , y) �
Nesterov Momentum EnKF Kovachki & Su, Boyd, Cand´ es 2014. (NIPS) Stuart • Momentum : Inverse Problem Formulations u + 3 u n +1 = v n − h ∇ f ( v n ) ¨ t ˙ u + ∇ f ( u ) = 0 Ensemble Kalman Filter n ⇐ ⇒ v n +1 = u n +1 + n +3 ( u n +1 − u n ) u (0) = 0 ˙ Numerics v 0 = u 0 u (0) = u 0 • Modified Limit : u ( j ) + 3 u ( j ) = − C uw ( u ) ∇ z Ψ(G( u ( j ) ) , y) ¨ t ˙ u ( j ) (0) = 0 ˙ u ( j ) (0) = u ( j ) 0
Discrete Scheme EnKF Kovachki & • Concatenate : u = [ u (1) , . . . , u ( J ) ] Stuart Inverse Problem u + 3 Formulations ¨ t ˙ u = − D ( u ) u Ensemble Kalman Filter where Numerics D ( jk ) ( u ) = 1 J � G( u ( k ) ) − ¯ G , ∇ z Ψ(G( u ( j ) ) , y) � • Discretize : u n +1 = v n − h n D ( v n ) v n n n +3 ( u n +1 − u n ) v n +1 = u n +1 + v 0 = u 0 = [ u (1) 0 , . . . , u ( J ) 0 ] T
Initialization, Noise, and Predictions EnKF • Initial Ensemble : Kovachki & u (1) 0 , . . . , u ( J ) ∼ µ 0 ( u ) Stuart 0 Inverse Problem • Noise (Supervised) : Formulations Ensemble v ( j ) n +1 = v ( j ) + ξ ( j ) ξ ( j ) Kalman Filter ˜ n +1 ∼ µ n +1 ( u ) n n +1 Numerics � Cov[ µ n +1 ] ∝ h n Cov[ µ 0 ] • Ensemble Refresh (Online) : u ( j ) u n + ξ ( j ) ξ ( j ) n +1 = ¯ n +1 ∼ µ 0 ( u ) n +1 • Predict : J u n +1 = 1 u ( j ) � ¯ n +1 J j =1
Complete Algorithm EnKF Kovachki & Stuart • Mini-batch data (at each step): Inverse Problem l } m l } m Formulations x n = { x i ( n ) y n = { y i ( n ) l =1 l =1 Ensemble Kalman Filter where { i ( n ) 1 , . . . , i ( n ) Numerics m } ⊆ { 1 , . . . , N } . • Compute : use discrete scheme as shown with x �→ x n y �→ y n • Step-size : adaptive h h n = ǫ + � D n �
Table of Contents EnKF Kovachki & Stuart Inverse Problem Formulations 1 Inverse Problem Formulations Ensemble Kalman Filter Numerics 2 Ensemble Kalman Filter 3 Numerics
Convolutional Models EnKF Ba, Kiros and Hinton 2016. (NIPS) Kovachki & Stuart Net 1 ∼ 14k Net 2 ∼ 30k Conv12x3x3 Conv12x3x3 Inverse Problem Formulations MaxPool2x2 Conv12x3x3 Ensemble MaxPool2x2 Kalman Filter Conv24x3x3 Conv24x3x3 Numerics MaxPool2x2 Conv24x3x3 MaxPool2x2 Conv32x3x3 Conv32x3x3 MaxPool2x2 Conv32x3x3 FC-100 FC-100 FC-10 FC-10 • ReLU applied after each block. • Layer Normalization applied after each convolutional layer.
MNIST Dataset EnKF LeCun and Cortes 1999. Kovachki & Stuart Inverse Problem Formulations Ensemble Kalman Filter Numerics
MNIST Supervised EnKF Kovachki & Stuart Inverse Problem Formulations Ensemble Kalman Filter Numerics Figure: Test Accuracy of Net 1 on MNIST (batched). J Loss Momentum Noise Refresh 5000 Cross Entropy � � χ
MNIST Online EnKF Kovachki & Stuart Inverse Problem Formulations Ensemble Kalman Filter Numerics Figure: Test Accuracy of Net 1 on MNIST (online). J Loss Momentum Noise Refresh 5000 Cross Entropy χ χ �
Fashion MNIST Dataset EnKF Xiao, Rasul and Vollgraf 2017. Kovachki & Stuart Inverse Problem Formulations Ensemble Kalman Filter Numerics
Fashion MNIST Supervised EnKF Kovachki & Stuart Inverse Problem Formulations Ensemble Kalman Filter Numerics Figure: Test Accuracy of Net 2 on Fashion MNIST (batched). J Loss Momentum Noise Refresh 5000 Cross Entropy � � χ
RNN EnKF Kovachki & Stuart Inverse Problem Formulations Ensemble Kalman Filter Numerics
Time Series Online EnKF Kovachki & Stuart Inverse Problem Formulations Ensemble Kalman Filter Numerics Figure: Time Series prediction with a RNN. J Loss Momentum Noise Refresh 1000 MSE χ χ χ
Recommend
More recommend