1 Depth and Surface Normal Estimation from a Single Image Mian Wei University of Toronto
2 Indirect-Invariant What is the problem?
3 Indirect-Invariant Given one image
4 N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and support inference from RGBD images,” in Proc. Eur. Conf. Comput. Vision , 2012, pp. 746–760.
5 Indirect-Invariant Estimate the following:
6 Eigen, D. and Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. ICCV 2015
7 Eigen, D. and Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. ICCV 2015
8 Indirect-Invariant Why is this hard?
9 Indirect-Invariant Multiple ambiguities
10 Indirect-Invariant Scale ambiguity
11
12
13 Indirect-Invariant Bas-relief ambiguity P. Belhumeur, D. Kriegman, and A. Yuille, “The Bas-Relief Ambiguity,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1040-1046, 1997.
14 Indirect-Invariant Let’s play a game
15 Indirect-Invariant Spot the Difference
16 P. Belhumeur, D. Kriegman, and A. Yuille, “The Bas-Relief Ambiguity,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1040-1046, 1997.
17 P. Belhumeur, D. Kriegman, and A. Yuille, “The Bas-Relief Ambiguity,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1040-1046, 1997.
18 Indirect-Invariant All the same
19 P. Belhumeur, D. Kriegman, and A. Yuille, “The Bas-Relief Ambiguity,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1040-1046, 1997.
20 P. Belhumeur, D. Kriegman, and A. Yuille, “The Bas-Relief Ambiguity,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1040-1046, 1997.
21 Indirect-Invariant Family of transformation
22 Indirect-Invariant Generalized Bas-Relief
23 Indirect-Invariant Change shape and illumination
24 Indirect-Invariant Yield same image
25 Indirect-Invariant Existing works
26 Indirect-Invariant Multi-view Stereo Hartley,R. and Zisserman, A. 2000. Multiple view geometry in computer vision , Cambridge University Press: Cambridge, UK.
27
28
29 Indirect-Invariant Photometric Stereo Woodham, R.J. (1980), Photometric method for determining surface orientation from multiple images, Optical Engineering 19 (1) 139-144.
30 Indirect-Invariant Collimated Light Sources
31 Indirect-Invariant Light rays parallel
32
33
34
35 Indirect-Invariant Shape from Focus S. Nayar and N. Yasuo, “Shape From Focus,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 8, pp. 824-831, 1994.
36
37
38
39
40
41
42
43
44
45
46
47
48 Indirect-Invariant Light Fall-off Stereo M. Liao, L. Wang, R. Yang, and M. Gong. Light fall-off stereo. In Proceedings of CVPR, pages 1–8, 2007.
49
50
51 Indirect-Invariant Specialized Hardware
52 Indirect-Invariant Laser Scanner
53 Indirect-Invariant Active Illumination
54 Indirect-Invariant Time of Flight
55 Indirect-Invariant Estimating Depth D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. NIPS 2014
56
57 Indirect-Invariant Train 2 networks
58 Indirect-Invariant Global coarse-scale network
59 Indirect-Invariant Local fine-scale network
60 Indirect-Invariant Global coarse-scale network
61 Indirect-Invariant Learns a coarse depth map
62
63
64
65 Indirect-Invariant Used as input to local network
66 Indirect-Invariant Intuition:
67 Indirect-Invariant Coarse info learnt already
68 Indirect-Invariant Focus on learning finer info
69
70
71 Indirect-Invariant Scale ambiguity
72 Indirect-Invariant Scale invariant error function
73 n D ( y , y * ) = 1 ∑ (log y i − log y * + α ( y i , y * i )) 2 i 2 n i = 1 n i ) = 1 α ( y i , y * ∑ (log y * i − log y i ) n i = 1
74 n D ( ay , ay * ) = 1 ∑ (log ay i − log ay * + α ( ay i , ay * i )) 2 i 2 n i = 1 n D ( ay , ay * ) = 1 ∑ (log a − log a + log y i − log y * + α ( ay i , ay * i )) 2 i 2 n i = 1 n D ( ay , ay * ) = 1 ∑ (log y i − log y * + log a − log a + α ( y i , y * i )) 2 i 2 n i = 1 D ( ay , ay * ) = D ( y , y * )
75 Indirect-Invariant Loss Function
76 Indirect-Invariant Scale invariant
77 n n L ( y , y * ) = 1 − λ ∑ d 2 ∑ ) 2 n 2 ( d i i n i = 1 i = 1 d i = log y i − log y * i
78 Indirect-Invariant 2 Datasets
79 Indirect-Invariant NYUDepthV2 N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and support inference from RGBD images,” in Proc. Eur. Conf. Comput. Vision , 2012, pp. 746–760.
80 Indirect-Invariant Indoor Rooms
81
82 Indirect-Invariant KITTI A. Greiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. International Journal of Robotics Research (IJRR). 2013.
83 Indirect-Invariant Outdoor images taken on a car
84
85 Indirect-Invariant How do you get ground truth?
86 Indirect-Invariant NYUDepthV2
87 Indirect-Invariant Kinect
88
89 Indirect-Invariant KITTI
90
91 Indirect-Invariant Time of Flight
92 Indirect-Invariant Times how long light travels
93 Indirect-Invariant From light source to camera
94 Indirect-Invariant Results
95
96
97
98 Indirect-Invariant Estimating Surface Normals X. Wang, D. F. Fouhey, and A. Gupta. Designing deep networks for surface normal estimation. CVPR 2015
99 Indirect-Invariant Similar to Eigen
100
Recommend
More recommend