deposition and fate of mercury in forests of the
play

Deposition and Fate of Mercury in Forests of the Adirondacks - PowerPoint PPT Presentation

Deposition and Fate of Mercury in Forests of the Adirondacks Bradley D. Blackwell and Charles T. Driscoll Syracuse University Mercury Cycle Deposition Wet deposition occurs through precipitation Throughfall enrichment Dry


  1. Deposition and Fate of Mercury in Forests of the Adirondacks Bradley D. Blackwell and Charles T. Driscoll Syracuse University

  2. Mercury Cycle

  3. Deposition • Wet deposition occurs through precipitation • Throughfall enrichment • Dry deposition includes particulates and gaseous Hg • Uptake by foliage • Variable across landscape Vijayaraghavan et al. 2007

  4. Adirondack Park • Largest park in the continental U.S. • Important conservation and recreation area • Receives mercury deposition from local, regional, and global sources • Biological mercury “hotspot” • Park-wide fish mercury advisory plus 55 individual water body advisories

  5. Mercury Deposition in Adirondack Park • Historical yearly deposition 5 µg/m 2 ; current estimates 9 µg/m 2 (Lorey and Driscoll 1999) • Regional Sources – Ohio Valley, Pennsylvania, Texas • Global Sources – Up to 20% from Asia (Seigneur et al. 2003) Choi et al. 2008

  6. Research Overview Phase 1: Compare mercury • cycling dynamics in hardwood and conifer forests (Huntington Forest) • Phase 2: Examine mercury deposition along an elevation gradient (Whiteface Mountain) Phase 3: Conduct spatial analysis • of mercury in foliage and soil across Adirondack Park (50 sites)

  7. Wet Deposition – Huntington Forest 25 MDN Hardwood Conifer 20 15 Hg (ng/L) 10 5 0

  8. Wet Deposition – Whiteface Mountain 10 Hardwood Spruce/Fir Alpine 8 Cloudwater 6 Hg (ng/L) 4 2 0

  9. Wet Deposition – Whiteface Mountain 35 30 25 Hardwood 20 Spruce/Fir Hg (ng/L) 15 Alpine 10 5 0 0 5 10 15 20 25 DOC (ppm)

  10. Foliar Mercury - 2010 40 35 Yellow Birch Sugar Maple 35 30 30 25 25 Hg (ng/g) Hg (ng/g) 20 20 15 15 10 10 5 5 R 2 = 0.9285 R 2 = 0.9411 0 0 0 50 100 150 0 50 100 150 Days Days 30 American Beech White Pine 25 30 20 Hg (ng/g) 25 15 Hg (ng/g) 20 Age 1 15 10 Age 2 10 5 5 R 2 = 0.9604 0 0 0 50 100 150 0 50 100 150 Days Days

  11. Spatial Survey - Latitude South North

  12. Spatial Survey - Longitude West East

  13. Spatial Survey - Elevation

  14. Foliar Mercury Elevation Patterns (Paper Birch) 35 2009 (R 2 =0.4358) 2010 (R 2 =0.0168) 30 25 Hg (ng/ g) 20 15 10 5 400 600 800 1000 1200 1400 1600 Elevation (m)

  15. Deposition Totals – Whiteface Mountain 40 Throughfall Lit t er Hg Deposition (ug/ m2/ year) 30 Cloudwat er 20 10 0 Hardwood S pruce/ Fir Alpine

  16. Foliar – Soil Mercury 450 400 350 300 250 Hg (ng/g dw) 200 150 30 20 Foliage 10 Oi/Oe Oa 0 Beech Maple Pine Spruce Fir Dominant Species

  17. Soil Profiles – Huntington Forest 8 Oa 7 6 Bh 5 Bs1 4 Bs2 3 Bs3 2 Conifer C 1 Hardwood 0 0 50 100 150 Hg (ng/g)

  18. Soil Patterns Organic Soil Mercury 900 800 700 Hg (ng/g) 600 500 400 300 200 100 R² = 0.4457 0 400 600 800 1000 1200 1400 1600 Elevation

  19. Spatial Survey - Elevation

  20. Conclusions • Deposition pathways contribute mercury differently among different forest types • Mercury accumulates and concentrates in organic soil layers • Latitude, longitude, and elevation all have significant effects on foliar and soil mercury concentrations in Adirondack Park

  21. Future Plans • Publish data presented • Develop model and map of atmospheric deposition in Adirondack Park • Create GIS layer of mercury deposition that will be available to researchers and managers

  22. Acknowledgements • Clarkson University • DEC • Eric Hebert • West Virginia University, Wisconsin

Recommend


More recommend