DEPLETED MONOLITHIC ACTIVE PIXEL SENSORS IN 180 NM TOWERJAZZ AND 150 NM LFOUNDRY TECHNOLOGY M. BARBERO, P. BARRILLON, I. BERDALOVIC, C. BESPIN , S. BHAT, P. BREUGNON, I. CAICEDO, R. CARDELLA, Z. CHEN, Y. DEGERLI, L. FLORES, J. DINGFELDER, S. GODIOT, F. GUILLOUX, T. HIRONO, T. HEMPEREK, F. HÜGGING, H. KRÜGER, T. KUGATHASAN, C. MARIN TOBON, K. MOUSTAKAS, P. PANGAUD, H. PERNEGGER, F. PIRO, P. RIEDLER, A. ROZANOV, P. RYMASZEWSKI, P. SCHWEMLING, W. SNOEYS, M. VANDENBROUCKE, T. WANG, N. WERMES, S. ZHANG A COLLABORATION EFFORT OF UNIVERSITY OF BONN, CERN (GENEVA), CPPM (MARSEILLE) & IRFU (SACLAY)
STANDARD MONOLITHIC PIXEL SENSORS − Combine sensor and readout on same wafer using commercial CMOS technologies − Charge collection mainly by diffusion in epi-layer (typically low-resistivity) − Too slow and not-radiation hard for high radiation and high rate experiments like ATLAS ITk − Need depleted sensor volume for fast charge Kolanoski , Wermes 2015 collection and large signal à DMAPS 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 2
DEPLETED MONOLITHIC PIXELS − Depletion depth 𝑒 ∝ 𝜍 𝑊 %&'( − High resistive substrate material ( 𝜍 = 100 Ωcm − kΩcm) − High voltage add-ons (50 − 200 V bias ) − Multiple nested wells for full CMOS − Backside processing (thinning) − Fully depleted high-resistive bulk or epitaxial layer as charge sensitive volume 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 3
CMOS TECHNOLOGY − Commercial processes with high resistive wafers available For example: − Large production capabilities − Low cost per wafer − Fast turn around time − Monolithic designs achievable − Low module cost − Thin modules − Small pixel sizes (50 x 50 µm 2 or smaller) and many more… − Crucial question: radiation hardness and fast charge collection possible? 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 4
DEPLETED MONOLITHIC ACTIVE PIXELS Large collection electrode Small collection electrode − Electronics inside charge collection well − Charge collection well separated from electronics − Uniform field across pixel volume − Longer drift distances & low field regions − Short(er) drift distances à radiation hard? à radiation hard − Small sensor capacitance − Large(r) sensor capacitance à low noise and power (at given SNR) à higher noise at given power 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 5
DEVELOPMENT LINES 10mm 10mm 5mm 50 x 150 µm 2 9.5m 9.5mm m 50 x 250 µm 2 5mm Monolithic 50 x 250 µm 2 CCPD_LF LF-CPIX (DEMO) - Subm. Sep. 2014 LF-Monopix1 LF-MonoPix2 - Subm. Mar. 2016 - Fast R/O coupled to FE-I4 - Subm. Aug. 2016 - Subm. Spring 2020 - Fast R/O coupled to FE-I4 - Fast column drain R/O - Full height chip 20 mm 10 mm 5mm TJ-Monopix 5.7 mm 33 x 33 µm 2 MALTA 20 mm 36.5 x 36.5 µm 2 miniMALTA 36 x 40 µm 2 - Subm. 2018 INVESTIGATOR ALICE ALPIDE TJ-MonoPix2 - measures for MALTA (asynchronous) & - Subm. 2016 - Subm. Spring 2020 rad. hardness TJ-Monopix (column drain) - 8 x 8 pixel - Full size 2x2 cm 2 submatrices - Subm. 2018 , large matrices - improved sensor and front end - Fast asynchr & col. drain R/O 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 6
LF-MONOPIX AND TJ-MONOPIX LF-Monopix TJ-Monopix - Fully monolithic DMAPS prototype chips - Complete digital logic inside the pixels - FE-I3 like column-drain readout architecture that can cope with ATLAS ITk outer layer hit rate 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 7
LARGE COLLECTION ELECTRODE DESIGN: LARGE COLLECTION ELECTRODE DESIGN: LF-MONOPIX LF-MONOPIX
LF-MONOPIX: DESIGN − Large collection electrode design in LFoundry 150 nm CMOS technology − High-resistive substrate (> 2 kΩcm) − 250 x 50 µm 2 pixel size (129 rows / 36 columns), nine flavors Design: IRFU / CPPM / Bonn 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 9
LF-MONOPIX: SIGNAL AND NOISE − Gain (unirradiated) between 10 and 12 µV / e - − Noise (ENC) 180 – 240 e - , dispersion 30 – 70 e - − Typical signal up to 25 ke - and tuned threshold ca. 1400 e - (dispersion 400 e - ) − No loss of gain and up to 150 e - noise increase after irradiation to 10 15 neq cm -2 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 10
LF-MONOPIX: EFFICIENCY Neutron irradiated 10 15 neq cm -2 : 98.9 % (130 V) Unirradiated: 99.6 % (200 V) − 1700 e - threshold (not minimum achievable for unirradiated chip) 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 11
LF-MONOPIX: IN-PIXEL EFFICIENCY − High and homogeneous efficiency at 200 V bias Unirradiated voltage before irradiation − Small loss of efficiency (1.8 %) between pixels after irradiation due to a reduced signal shared Neutron irradiated between adjacent pixels Horizontal Position 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 12
LF-MONOPIX: TID IRRADIATION − Gain variation < 3 % for all tested flavours − Noise increase of 15 % for CMOS flavors, 25 % for NMOS flavors due to leakage and changing of CSA bias condition, nominally ENC NMOS < ENC CMOS − Irradiation without annealing before measurements 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 13
LF-MONOPIX: TID IRRADIATION − Gain variation < 3 % for all tested flavours − Noise increase of 15 % for CMOS flavors, 25 % for NMOS flavors due to leakage and changing of CSA bias condition, nominally ENC NMOS < ENC CMOS − Irradiation without annealing before measurements 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 14
SMALL COLLECTION ELECTRODE DESIGN: TJ-MONOPIX
TJ-MONOPIX: DESIGN − Small collection electrode design in 180 nm TowerJazz technology − Low power consumption (≈ 120 mW/cm 2 ) − Modified process with additional n-layer for full depletion − 36 µm x 40 µm pixel size arranged as 448 x 224 pixels in four flavors Spacing NMOS PMOS pwell nwell pwell pwell nwell Deep pwell Low dose N implant Depleted boundry ρ ~ 1 kΩcm P - Epitaxial layer P ++ Substrate 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 16
TJ-MONOPIX: THRESHOLD & NOISE Irradiated sample (10 15 neq cm -2 ) Unirradiated Sample Threshold 350 e - 570 e - Threshold dispersion 34 e - 66 e - ENC 17 e - 23 e - 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 17
TJ-MONOPIX: MEAN EFFICIENCY − Testbeam measurement in 2.5 GeV electron beam in Bonn (ELSA) Irradiated (10 15 neq cm -2 ): 69% Unirradiated: 97% 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 18
TJ-MONOPIX: IN-PIXEL EFFICIENCY − High resolution in-pixel efficiency from MALTA chip − Modification of sensor geometry (gap & additional p-well) show improved charge collection in pixel corners (homogenous) miniMalta in pixel efficiency, sector 1 miniMalta in pixel efficiency, sector 1 1 track y pos [um] 70 0.95 60 0.9 0.85 50 0.8 40 0.75 Modifications on 30 0.7 sensor and front-end 0.65 20 0.6 10 0.55 0 0.5 0 10 20 30 40 50 60 70 track x pos [um] Irradiated to 10 15 neq cm -2 - - Homogenous efficiency of 97.9 % More on MALTA in previous talk (# 196) M. Dyndal et al., arXiv:1909.11987 and poster session (# 343) 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 20
TJ-MONOPIX: TID IRRADIATION − Irradiation without annealing before measurements − Due to technical limitation HV diode reset flavor only up to 1 MRad PMOS RESET FLAVOR HV DIODE RESET FLAVOR 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 21
FUTURE MONOPIX DESIGNS
THE MONOPIX2 DESIGNS LF-MONOPIX2 TJ-MONOPIX2 − Chip size increased to 2 × 1 cm 2 − Full size chip of 2 × 2 cm 2 − Smaller pixels: 50 × 150 μm 2 − Pixel size: 33.04 × 33.04 μm 2 − Larger matrix: 340 × 56 px − Larger matrix: 512 × 512 px − Analog FE improvement − Analog FE improvement and threshold tuning − Downstream data processing, − Pixel layout improvement e.g. data buffering and triggering − Diode reset for good TID performance − Sensor improvements for better NIEL and TID performance à see talk of H. Pernegger Submission for both chips in spring 2020 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 23
CONCLUSION − Promising results for monolithic active CMOS sensors in both large and small electrode design − Fully functional fast read-out architecture in both chips − Large collection electrode design radiation hard up to 10 15 neq cm -2 NIEL and 100 MRad TID damage − Issues for low efficiency after neutron irradiation in small electrode design identified and solved (talk by H. Pernegger and poster from L. Flores) − Modifications on front-end in small electrode design for better TID performance (talk by H. Pernegger) − Full size prototypes in both technologies currently under development 16.12.2019 bespin@physik.uni-bonn.de - HSTD12 2019 24
Recommend
More recommend