Filtering Pros: v 1 v 2 v 3 v 4 v 5 v 6 • Propagates information over v 7 v 8 v 9 v 10 v 11 v 12 large distances ṽ i • up to 1/3 of image v 13 v 14 v 15 v 16 v 17 v 18 v 19 v 20 v 21 v 22 v 23 v 24 28
Filtering Pros: v 1 v 2 v 3 v 4 v 5 v 6 • Propagates information over v 7 v 8 v 9 v 10 v 11 v 12 large distances ṽ i • up to 1/3 of image v 13 v 14 v 15 v 16 v 17 v 18 Cons: v 19 v 20 v 21 v 22 v 23 v 24 28
Filtering Pros: v 1 v 2 v 3 v 4 v 5 v 6 • Propagates information over v 7 v 8 v 9 v 10 v 11 v 12 large distances ṽ i • up to 1/3 of image v 13 v 14 v 15 v 16 v 17 v 18 Cons: v 19 v 20 v 21 v 22 v 23 v 24 • No probabilistic interpretation 28
Filtering Pros: v 1 v 2 v 3 v 4 v 5 v 6 • Propagates information over v 7 v 8 v 9 v 10 v 11 v 12 large distances ṽ i • up to 1/3 of image v 13 v 14 v 15 v 16 v 17 v 18 Cons: v 19 v 20 v 21 v 22 v 23 v 24 • No probabilistic interpretation • No joint inference 28
Filtering Pros: v 1 v 2 v 3 v 4 v 5 v 6 • Propagates information over v 7 v 8 v 9 v 10 v 11 v 12 large distances ṽ i • up to 1/3 of image v 13 v 14 v 15 v 16 v 17 v 18 Cons: v 19 v 20 v 21 v 22 v 23 v 24 • No probabilistic interpretation • No joint inference • No learning 28
Dense Random Fields 29
Dense Random Fields 29
Dense Random Fields 29
Dense Random Fields X X E ( X ) = ψ i ( X i ) + ψ ij ( X i , X j ) i i,j ∈ N unary term pairwise term 30
Dense Random Fields X X E ( X ) = ψ i ( X i ) + ψ ij ( X i , X j ) i i,j ∈ N unary term pairwise term • Every node is connected to every other node • Connections weighted differently 30
Dense Random Fields 31
Dense Random Fields 31
Dense Random Fields 32
Dense Random Fields Pros: 32
Dense Random Fields Pros: • Long range interactions 32
Dense Random Fields Pros: • Long range interactions • No shrinking bias 32
Dense Random Fields Pros: • Long range interactions • No shrinking bias • Probabilistic interpretation 32
Dense Random Fields Pros: • Long range interactions • No shrinking bias • Probabilistic interpretation • Parameter learning 32
Dense Random Fields Pros: • Long range interactions • No shrinking bias • Probabilistic interpretation • Parameter learning • Combine with other models 32
Dense Random Fields 33
Dense Random Fields Cons: 33
Dense Random Fields Cons: • Very large model • 50’000 - 100’000 variables • billions pairwise terms 33
Dense Random Fields Cons: • Very large model • 50’000 - 100’000 variables • billions pairwise terms • Traditional inference very slow • MCMC “converges” in 36h • GraphCuts and alpha-exp.: no convergence in 3 days 33
Dense Random Fields • Efficient inference • 0.2s / image • Pairwise term • linear combination of Gaussians 34
Dense Random Fields X X ψ ij ( X i , X j ) E ( X ) = ψ i ( X i )+ i>j i 35
Dense Random Fields X X ψ ij ( X i , X j ) E ( X ) = ψ i ( X i )+ i>j i X k ( m ) ( f i , f j ) µ ( m ) ( X i , X j ) ψ ij ( X i , X j ) = m 35
Dense Random Fields X X ψ ij ( X i , X j ) E ( X ) = ψ i ( X i )+ i>j i X k ( m ) ( f i , f j ) µ ( m ) ( X i , X j ) ψ ij ( X i , X j ) = m Gaussian kernel k (m) 35
Dense Random Fields X X ψ ij ( X i , X j ) E ( X ) = ψ i ( X i )+ i>j i X k ( m ) ( f i , f j ) µ ( m ) ( X i , X j ) ψ ij ( X i , X j ) = m Label compatibility 𝜈 (m) Gaussian kernel k (m) GRASS SHEEP WATER … 𝜈 GRASS 0 1 1 … ⨂ SHEEP 1 0 10 … 1 10 0 … WATER … … … … 0 35
Dense Random Fields ! − | s i − s j | 2 − | c i − c j | 2 ψ ij ( X i , X j ) = µ 1 ( X i , X j ) exp + 2 σ 2 2 σ 2 α β − | s i − s j | 2 ✓ ◆ µ 2 ( X i , X j ) exp 2 σ 2 γ 36
Dense Random Fields ! − | s i − s j | 2 − | c i − c j | 2 ψ ij ( X i , X j ) = µ 1 ( X i , X j ) exp + 2 σ 2 2 σ 2 α β − | s i − s j | 2 ✓ ◆ µ 2 ( X i , X j ) exp 2 σ 2 • Label compatibility γ 36
Dense Random Fields ! − | s i − s j | 2 − | c i − c j | 2 ψ ij ( X i , X j ) = µ 1 ( X i , X j ) exp + 2 σ 2 2 σ 2 α β − | s i − s j | 2 ✓ ◆ µ 2 ( X i , X j ) exp 2 σ 2 • Label compatibility γ • Potts model: 𝜈 (Xi,Xj) = [Xi ≠ Xj] 𝜈 GRASS SHEEP WATER … 0 1 1 1 GRASS SHEEP 1 0 1 1 WATER 1 1 0 1 … 1 1 1 0 36
Dense Random Fields ! − | s i − s j | 2 − | c i − c j | 2 ψ ij ( X i , X j ) = µ 1 ( X i , X j ) exp + 2 σ 2 2 σ 2 α β − | s i − s j | 2 ✓ ◆ µ 2 ( X i , X j ) exp 2 σ 2 • Label compatibility γ • Potts model: 𝜈 (Xi,Xj) = [Xi ≠ Xj] • Learned from data 𝜈 GRASS SHEEP WATER … 0 ? ? ? GRASS SHEEP ? 0 ? ? WATER ? ? 0 ? … ? ? ? 0 36
Dense Random Fields ! − | s i − s j | 2 − | c i − c j | 2 ψ ij ( X i , X j ) = µ 1 ( X i , X j ) exp + 2 σ 2 2 σ 2 α β − | s i − s j | 2 ✓ ◆ µ 2 ( X i , X j ) exp 2 σ 2 • Label compatibility γ • Potts model: 𝜈 (Xi,Xj) = [Xi ≠ Xj] • Learned from data (c i -c j ) 2 =( - ) 2 s j • Appearance kernel s i 36
Dense Random Fields ! − | s i − s j | 2 − | c i − c j | 2 ψ ij ( X i , X j ) = µ 1 ( X i , X j ) exp + 2 σ 2 2 σ 2 α β − | s i − s j | 2 ✓ ◆ µ 2 ( X i , X j ) exp 2 σ 2 • Label compatibility γ • Potts model: 𝜈 (Xi,Xj) = [Xi ≠ Xj] • Learned from data (c i -c j ) 2 =( - ) 2 s j • Appearance kernel • Color—sensitive s i 36
Dense Random Fields ! − | s i − s j | 2 − | c i − c j | 2 ψ ij ( X i , X j ) = µ 1 ( X i , X j ) exp + 2 σ 2 2 σ 2 α β − | s i − s j | 2 ✓ ◆ µ 2 ( X i , X j ) exp 2 σ 2 • Label compatibility γ • Potts model: 𝜈 (Xi,Xj) = [Xi ≠ Xj] • Learned from data • Appearance kernel • Color—sensitive s i s j • Local smoothness 36
Dense Random Fields ! − | s i − s j | 2 − | c i − c j | 2 ψ ij ( X i , X j ) = µ 1 ( X i , X j ) exp + 2 σ 2 2 σ 2 α β − | s i − s j | 2 ✓ ◆ µ 2 ( X i , X j ) exp 2 σ 2 • Label compatibility γ • Potts model: 𝜈 (Xi,Xj) = [Xi ≠ Xj] • Learned from data • Appearance kernel • Color—sensitive s i s j • Local smoothness • Discourages single pixel noise 36
E ffi cient inference X X ψ ij ( X i , X j ) E ( X ) = ψ i ( X i )+ i>j i 37
E ffi cient inference X X ψ ij ( X i , X j ) E ( X ) = ψ i ( X i )+ i>j i Find most likely assignment (MAP) P ( X ) = 1 X P ( X ) where Z exp( − E ( X )) x = arg max ˆ 37
Recommend
More recommend