Dense optical flow estimation in image sequences and disparity map computation for stereo pairs applied to 3D reconstruction Javier Sánchez Pérez Universidad de Las Palmas de Gran Canaria Departamento de Informática y Sistemas Grupo de Análisis Matemático de Imágenes
Contents • Optical flow methods – Standard approach – Considering colour images – Making the method symmetric • Stereoscopic methods – Epipolar geometry – Standard approach – Colour method – Symmetrical method • Main contributions and conclusions
Optical flow Standard approach • Variational approach • Energy minimization • Large displacements r • Numerical scheme h ( x , y ) • Experimental results
Variational approach • Energy r r r ∫ ∫ = ⋅ + α Φ ⋅ E ( h ) L ( h ) dw ( h ) dw Ω Ω r ( ) t = h u ( x , y ), v ( x , y ) r ( ) 2 = − + + L ( h ) I ( x , y ) I ( x u ( x , y ), y v ( x , y ) ) 1 2 ( ) r r r Φ = ∇ ⋅ ∇ ⋅ ∇ t h h D ( I ) h 1
Regularizing term • Nagel-Enkelmann operator ⎧ ⎫ ⎛ ⎞ − 2 I I I ⎪ ⎪ 1 ( ) ⎜ ⎟ y x y ∇ = + γ 2 D I Id ⎨ ⎬ ⎜ ⎟ 2 − 2 I I I ∇ + γ 2 ⎪ ⎪ I 2 ⎝ ⎠ ⎩ ⎭ x y x
Energy minimization • Associated Euler-Lagrange equations ) ( ) r r ∂ ⎛ ⎞ I r r ( ( ) = ∇ ∇ + − + + ⎜ 2 ⎟ 0 C div D I u I I ( x h ) ( x h ) 1 1 2 ∂ x ⎝ ⎠ ) ( ) r r ⎛ ⎞ ∂ I r r ( ( ) ⎜ ⎟ = ∇ ∇ + − + + 0 C div D I v I I ( x h ) 2 ( x h ) ⎜ ⎟ 1 1 2 ∂ y ⎝ ⎠
Energy minimization • Gradient descent ( ) r r ∂ ∂ ⎛ ⎞ u I r r ( ( ) ) = ∇ ∇ + − + + ⎜ ⎟ C div D I u I I ( x h ) 2 ( x h ) 1 1 2 ∂ ∂ t ⎝ x ⎠ ( ) r ⎛ ⎞ r ∂ ∂ v I r r ( ( ) ) = ∇ ∇ + − + ⎜ ⎟ + C div D I v I I ( x h ) 2 ( x h ) ⎜ ⎟ 1 1 2 ∂ ∂ t y ⎝ ⎠ • Anisotropic diffusion – diffusion tensor ( ) ⎧ ∇ ↑ ∇ I div u ∂ ⎪ u ⊥ ∇ = ∇ ∇ ⇒ I div ( D ( I ) u ) ⎨ 1 ∇ ↓ ∇ ∂ I div ( u ) t ⎪ ⎩ 2
Large displacements • Pyramidal approach ) ( ) r ⎛ ⎞ r ∂ ∂ ( ( ) z u I r r ⎜ ⎟ = ∇ ∇ + − + + z z z z C div D I u I I ( x h ) 2 ( x h ) ⎜ ⎟ 1 z 1 2 z z ∂ ∂ t x ⎝ ⎠ ) ( ) r ⎛ ⎞ r ∂ ( ( ) ∂ z v I r r ⎜ ⎟ = ∇ ∇ + − + + z z z z C div D I v I I ( x h ) 2 ( x h ) ⎜ ⎟ 1 z 1 2 z z ∂ ∂ t y ⎝ ⎠ ( ) ( ) = z z z I x , y I 2 x , 2 y > > > → z z z 0 K 0 1 n ( ) ( ) ( ) ( ) → → → → u , v u , v u , v u , v K z z z z z z 0 0 1 1 n n
Large displacements
Large displacements • Scale-Space approach ) ( ) r ⎛ ⎞ r ∂ ∂ σ ( ( ) u I r r ⎜ ⎟ = ∇ σ ∇ + σ − σ + + σ C div D I u I I ( x h ) 2 ( x h ) ⎜ ⎟ σ σ σ 1 1 2 ∂ ∂ t x ⎝ ⎠ ) ( ) r ⎛ ⎞ r ∂ ∂ σ ( ( ) v I r r ⎜ ⎟ = ∇ σ ∇ + σ − σ + + σ C div D I v I I ( x h ) 2 ( x h ) ⎜ ⎟ σ σ σ 1 1 2 ∂ ∂ t y ⎝ ⎠ σ = I G * I σ σ > σ > > σ → .... 0 0 1 n → → → ( u , v ) ( u , v ) ..... ( u n v , ) σ σ σ σ σ σ 0 0 1 1 n
Large displacements
Invariance • Invariance under gray level shifts α = C 2 ∇ max I ( x , y ) ( x , y ) ν ∫ = s H ( z ) dz ∇ I 0
Numerical scheme ⎛ ⎞ + + + + + − + − k 1 k 1 k 1 k 1 d d u u d d u u ⎜ ⎟ + + − − i 1 , j i , j i 1 , j i , j + i 1 , j i , j i 1 , j i , j + ⎜ 2 2 ⎟ 2 h 2 h 1 1 ⎜ ⎟ + + + + + k 1 − k 1 + k 1 − k 1 f f u u f f u u ⎜ ⎟ + + − − i , j 1 i , j i , j 1 i , j + i , j 1 i , j i , j 1 i , j + ⎜ ⎟ + − k 1 k 2 2 u u 2 h 2 h ⎜ ⎟ i , j i , j 1 1 = + C ∆ t ⎜ + + − + + + − + ⎟ k 1 k 1 k 1 k 1 e e u u e e u u + + + + − − − − + i 1 , j 1 i , j i 1 , j 1 i , j + i 1 , j 1 i , j i 1 , j 1 i , j − ⎜ ⎟ 2 2 2 2 h 2 2 h ⎜ ⎟ 1 1 ⎜ ⎟ + + − + + + − + k 1 k 1 k 1 k 1 e e u u e e u u ⎜ ⎟ + − + − − + − + i 1 , j 1 i , j i 1 , j 1 i , j i 1 , j 1 i , j i 1 , j 1 i , j − − ⎜ ⎟ 2 2 2 2 h 2 2 h ⎠ ⎝ 1 1 ∂ ( ( ) ( ) ) I ( ) σ − + + 2 , + + k k k k I x , y I x u , y v x u , y v σ σ 1 , i , j i , j 2 , i , j i , j i , j i , j i , j i , j i , j i , j ∂ x
Experimental results • Squares sequence
Experimental results ( ) ( ) ⎛ ⎞ ~ ~ 2 2 σ σ = − + − Error Average u u v v ⎜ ⎟ i , j i , j i , j i , j ⎝ ⎠ ( ) ( ) ⎛ ⎞ ⎛ ⎞ ~ ~ σ σ t u , v , 1 u , v , 1 ⎜ ⎟ ⎜ ⎟ = i , j i , j i , j i , j Error Average arccos ( ) ( ) ( ) ( ) ⎜ ⎟ ⎜ ⎟ ~ ~ ⎜ ⎟ σ σ 2 + 2 + 2 + 2 + u v 1 u v 1 ⎝ ⎠ ⎝ ⎠ i , j i , j i , j i , j
Experimental results • Square sequence
Experimental results Comparison with other methods in Barron et al. 100% dense methods Method Ang. Error Stand. Dev. Horn y Schunk 32,81º 13,67º Nagel 34,57º 14,38º Anandan 31,46º 18,31º Singh 46,12º 18,64º Ours 10,97º 9,60º
Experimental results • Taxi sequence
Experimental results • Yosemite sequence
Experimental results Comparison with other methods in Barron et al. 100% dense methods Method Ang. Error Stand. Dev. Horn y Schunk 9,78º 16,19º Nagel 10,22º 16,51º Anandan 13,36º 15,64º Singh 10,03º 13,13º Ours 5,53º 7,40º
Optical flow for color images • Energy ( ) r r r r 3 ( ) r r ∑∫ ∫ = − + + α ∇ ∇ ∇ 2 t E ( h ) I ( x ) I ( x h ) h D I h 1 , i 2 , i 1 , max = i 1 { } ∇ = ∇ ∇ ≥ ∇ ∀ = I ( x , y ) I I I i 1 , 2 , 3 max i i i 0 0
Results • Cube sequence
Symmetrical optic flow r h 1 r h 2 • Composed energy r r r r r r = + E ( h , h ) E ( h , h ) E ( h , h ) 1 2 1 1 2 2 1 2
Variational approach • Energies ( ) r r r r r r r ⎛ ⎞ ∫ ∫ ∫ h = + α Φ + β ψ + 2 ⎜ ⎟ E ( h , h ) L ( h ) ( h ) h h 1 ⎝ ⎠ 1 1 2 1 1 1 2 Ω Ω Ω ( ) r r r r r r r ⎛ ⎞ ∫ ∫ ∫ h = + α Φ + β ψ + 2 ⎜ ⎟ E ( h , h ) L ( h ) ( h ) h h 2 ⎝ ⎠ 2 1 2 2 2 2 1 Ω Ω Ω
Energy minimization • Choosing the ψ function ⎧ s ⎪ s ψ = ( s ) ⎨ s − γ 1 e ⎪ γ ⎩ • Iterative scheme r r r r r r + + + + = + n 1 n 1 n 1 n n n 1 E ( h , h ) E ( h , h ) E ( h , h ) 1 2 1 1 2 2 1 2
Experimental results • Squares sequence r h Occlusions 1 Euclid. error Ang. error Non- 0.16 0.50º symmetric Symmetric 0.081 0.18º
Experimental results • Marble blocks (H. H. Nagel) r h 1 Euclid. error Ang. error Non- 0.37 9.4º symmetric Symmetric 0.17 5.2º
Stereoscopic vision • Epipolar geometry • Variational approach • Energy minimization • Experimental results
Epipolar geometry Fundamental matrix m t 2 F m 1 =0 Epipolar lines I 2 I 1 m 1 m 2 C 2 C 1 M
Variational approach • Embedding the epipolar geometry I 2 I 1 m 1 r m 1 h m 2 λ ⎛ ⎞ a ⎜ ⎟ λ r ⎛ ⎞ u ( ( x , y )) = ⋅ ⎜ ⎟ ⎜ b ⎟ F m = h ⎜ ⎟ 1 λ ⎜ ⎟ v ( ( x , y )) ⎝ ⎠ c ⎝ ⎠
Variational approach • Energy ( ) r r r ( ) ∫ ∫ λ = − + λ + α ∇ λ ⋅ ∇ ⋅ ∇ λ 2 E ( ) I ( x ) I ( x h ( )) D I 1 2 1 λ λ ⎛ ⎞ ∂ ∂ ⎛ ⎞ I I r r ⎜ ⎟ − a 2 ( x ) b ⎜ 2 ⎟ ( x ) ⎜ ⎟ ( ) ∂ ∂ ∂ λ y ⎝ x ⎠ r r ⎝ ⎠ ( ( ) ) ( ) λ = ∇ ∇ λ + − C div D I I ( x ) I ( x ) 2 1 2 ∂ t + 2 2 a b
Experimental results • Hervé’s face
Experimental results • Inria Library
Recommend
More recommend