delivering low carbon buildings using cellulose materials
play

Delivering low carbon buildings using cellulose materials Pete - PowerPoint PPT Presentation

Delivering low carbon buildings using cellulose materials Pete Walker University of Bath Opportunities for natural materials in modern construction Reduced GHG emissions Lower embodied carbon (stored carbon) Improved building performance


  1. Delivering low carbon buildings using cellulose materials Pete Walker University of Bath

  2. Opportunities for natural materials in modern construction • Reduced GHG emissions Lower embodied carbon (stored carbon) Improved building performance • Resource efficiency Renewable supply Reduced waste • Healthier buildings • New agricultural markets

  3. Traditional natural materials • Craft based • Weather dependent: seasonal construction • Labour intensive • Slow • Expensive • Concerns for inferior durability • Concerns for poor structural resilience • Unregulated supply chain • Lack of certification, regulations, standards

  4. Market development: barriers for natural materials • Certification (lack of) • Cost • Financing • Perceptions of poor performance • Supply chain • Warranty (lack of)

  5. Products not Materials

  6. Prefabricated Straw Bale Insulated Panels: ModCell • Main components: • Timber framed panels • Straw bale infill • Lime:sand render • Manufactured off-site in temporary flying factories • Panels’ designed to be dismantled, reused and recycled

  7. Manufacture

  8. Construction

  9. Environmental Performance Testing Air ¡permeability: ¡0.86 ¡m 3 /hr ¡m 2 ¡@ ¡50Pa ¡ ¡

  10. Environmental Performance Testing Co-heating test: • 36 kWh/m 2 per annum • Represents around 70% savings on current UK stock average

  11. Environmental Performance Testing

  12. Prefabricated ¡hemp-­‑lime ¡panels ¡

  13. Hemp-lime insulation performance Wall 1: comprises 300 mm Mineral Wool insulation U = 0.15 W/m 2 K Wall 2: comprises 300 mm Hemp- Lime U = 0.30 W/m 2 K

  14. Time to reach steady-state, t s-s 20 20 20 20 20 20 18 18 18 18 18 18 16 16 16 16 16 16 Temperature, o C Temperature, o C Temperature, o C Temperature, o C Temperature, o C Temperature, o C 14 14 14 14 14 14 12 12 12 12 12 12 144 hours 144 hours 144 hours 144 hours 10 10 10 10 10 10 Steady-state 240 hours 240 hours 8 8 8 8 8 8 240 hours 264 hours Steady-state 264 hours Steady-state 6 6 6 6 6 6 312 hours Steady-state Steady-state 4 4 4 4 4 4 Steady-state Mineral Wool 24 hours Mineral Wool 24 hours Mineral Wool 24 hours 2 2 2 2 2 2 Mineral Wool 24 hours Mineral Wool 24 hours 0 0 0 0 0 0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.0 Normalised distance through wall Normalised distance through wall Normalised distance through wall Normalised distance through wall Normalised distance through wall Normalised distance through wall Figure 1 -Temperature change in 300 mm HL wall after sudden temperature drop Figure 1 -Temperature change in 300 mm HL wall after sudden temperature drop Figure 1 -Temperature change in 300 mm HL wall after sudden temperature drop Figure 1 -Temperature change in 300 mm HL wall after sudden temperature drop Figure 1 -Temperature change in 300 mm HL wall after sudden temperature drop Figure 1 -Temperature change in 300 mm HL wall after sudden temperature drop

  15. Product certification • Performance requirements: – Structural safety – Environmental performance – Durability • Quality assurance – Materials and components – Manufacturing process – Installation

  16. Spot the difference …

  17. Unintended consequences of airtight buildings

  18. Studies have confirmed that airtight buildings with low air exchange rates lead to deterioration in indoor environmental quality for occupants.* Several factors affect a healthy indoor environment, including: • Volatile Organic Compounds (VOCs) • Radon • Fibres • Particulate matters • Moisture and humidity • Rotting and microbiological/mould growth *Yu, Chuck W. F.; Kim, Jeong Tai: Low-Carbon Housings and Indoor Air Quality. In: Indoor and Built Environment, 21(1), 2012, pp. 5 - 15

  19. ECO-SEE project Eco-innovative, Safe and Energy Efficient wall panels and materials for a healthier indoor environment The ECO-SEE project aims to develop new eco- materials and components for the purpose of creating both healthier and more energy efficient buildings. ������������������������������������������ ������������������������ ����������������������������������������������������������������������������������������������� ������������������������������ ��������������������������

  20. Partners University ¡of ¡Bath ¡ UK ¡ Acciona ¡ Spain ¡ University ¡of ¡Aveiro ¡ Portugal ¡ Bangor ¡University ¡ UK ¡ BCB ¡ France ¡ BRE ¡ UK ¡ Claytec ¡ Germany ¡ Environment ¡Park ¡ Italy ¡ Fraunhofer ¡IBP ¡ Germany ¡ Greenovate! ¡Europe ¡ Belgium ¡ IIT ¡Delhi ¡ India ¡ Kronospan ¡ UK ¡ Nesocell ¡ Italy ¡ Skanska ¡ UK ¡ Tecnalia ¡ Spain ¡ Wood ¡Technology ¡InsRtute ¡ Poland ¡ ������������������������������������������ ������������������������ ����������������������������������������������������������������������������������������������� ������������������������������ ��������������������������

  21. VOC capture • Reaction between formaldehyde and proteins. • Reduce the VOCs and formaldehyde levels in indoor air by the sequestration and chemisorption of VOCs. Biocomposites ¡Centre, ¡Bangor ¡University ¡ ������������������������������������������ ������������������������ ����������������������������������������������������������������������������������������������� ������������������������������ ��������������������������

  22. Conclusions • Development of prefabricated panels undertaken to address practical concerns for straw bale and hemp-lime construction. • Successful development of panels has provided opportunity for addressing much wider barriers to market acceptance caused by lack of certification and warranty. • Wall panels using bio-based materials, including wood based panels and insulation products, aim to contribute to improved indoor environmental quality, and occupant well-being, through Moisture buffering and VOC capture.

  23. Acknowledgements – Dr Katharine Wall – Dr Andy Shea – Neil Price – Dr Dan Maskell – Dr Mike Lawrence – Dr Chris Gross – Sophie Hayward – Will Beazley – Dr Andrew Thomson – White Design Associates – ModCell Ltd – Integral Engineering Design – Lime Technology – Ian Pritchett – TSB UK – Carbon Connections UK – EACI Eco-Innovation – EU (FP7)

  24. Thank you

Recommend


More recommend