delegation
play

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness - PowerPoint PPT Presentation

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness Lisa Yang MIT Based on joint work with Yael Tauman Kalai and Omer Paneth time computation = ? Delegation () = y Proof checks in time


  1. Delegation with Updatable Unambiguous Proofs and PPAD-Hardness Lisa Yang MIT Based on joint work with Yael Tauman Kalai and Omer Paneth

  2. time π‘ˆ computation 𝑁 𝑦 = ? Delegation 𝑁(𝑦) = y Proof Ξ  π‘Š checks Ξ  in time β‰ͺ π‘ˆ Can verifying be faster than computing?

  3. Publicly Verifiable Delegation 𝐷𝑆𝑇 𝑁(𝑦) = y Proof Ξ 

  4. Prior Work: Publicly Verifiable Delegation Strong assumptions β€’ Random Oracle Model [Micali94] β€’ Knowledge assumptions [Groth10, Lipma12, Gennaro-Gentry-Parno-Raykova12, Bitansky- Canetti-Chiesa-Tromer12, Bitansky-Chiesa-Ishai-Ostrovsky- Paneth13…] β€’ Indistinguishability Obfuscation [Bitansky-Sanjam-Lin-Pass-Telang14,Canetti-Holmgren-Jain- Vaikuntanathan14,Koppula-Lewko-Waters14, Canetti- Holmgren16, Chen-Chow-Chung-Lai16] β€’ Multilinear maps [Paneth-Rothblum17] Delegation for bounded-depth circuits via Fiat-Shamir β€’ Optimal security of LWE [Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs19] β€’ Sub-exponential LWE [Kalai-Zhang20] Delegation for polynomial-time computations β€’ Bilinear groups [Kalai-Paneth-Y19]

  5. 𝐷 π‘ˆ Updatable Proofs [Valiant08] Consider a long computation 𝐷 0 β†’ 𝐷 π‘ˆ carried out over 𝐢 iterations 𝐷 𝑀 𝑗+1 … Updatable Proofs: update Ξ  𝑗 into Ξ  𝑗+1 𝐷 𝑀 𝑗 ~ computation performed Ξ  𝑗+1 Want the proof update to take time Ξ  𝑗 Want proofs to remain succinct 𝐷 0 [Bitansky-Canetti-Chiesa-Tromer13] using SNARKs (based on strong assumptions)

  6. Unambiguous Proofs 𝐷𝑆𝑇 𝑁(𝑦) = y Proofs Ξ  β‰  Ξ β€² Unambiguous Proofs: 𝑄 βˆ— (𝐷𝑆𝑇) cannot output Ξ  β‰  Ξ β€² for the same statement 𝑁 𝑦 = 𝑧 (except with negligible probability over 𝐷𝑆𝑇 ) [Reingold-Rothblum-Rothblum]

  7. Our Results: Delegation Delegation with updatable and unambiguous proofs based on the decisional bilinear group assumption: For a bilinear group 𝐻 of order π‘ž = 2 Θ(πœ†) and 𝛽 = 𝑃(log πœ†) given [Kalai-Paneth-Y19] for random 𝑕 ∈ 𝐻 and 𝑑 ∈ β„€ π‘ž it is hard to distinguish whether 𝑒 = 𝑑 2𝛽+1 or 𝑒 is an independent random element in β„€ π‘ž .

  8. Our Results: PPAD-Hardness [ Choudhuri-Hubacek-Kamath-Pietrzak-Rosen-Rothblum 19] PPAD-Hardness based on: 2. Any hard language 𝑀 decidable in super-polynomial time (and 1. The quasi-polynomial hardness of KPY’s bilinear group assumption polynomial space) β€’ For example, the hardness of SAT for sub-exponential size circuits (non-uniform ETH) suffices

  9. Related Work: PPAD-Hardness Strong assumptions β€’ Indistinguishability Obfuscation [Abbot-Kane-Valiant04, Bitanski-Paneth-Rosen15, Hubacek-Yogev17] β€’ Functional Encryption assumptions [Garg-Pandey-Srinivasan16, Komargodski-Segev17] Fiat-Shamir interactive protocol for a particular language β€’ Security of Fiat-Shamir/Optimal security of LWE [Choudhuri-Hubacek-Kamath-Pietrzak-Rosen- Rothblum19, Ephraim-Freitag-Komargodski-Pass19] β€’ Sub-exponential LWE [Lombardi-Vaikuntanathan20, Kalai-Zhang20, Jawale-Khurana20] Polynomial Local Search (PLS) Hardness [Bitansky-Gerichter20]

  10. 1. Delegation with Updatable Proofs β€’ Use recursive proof composition β€’ Without strong assumptions! Local extraction [Kalai-Paneth-Y19]

  11. 1. Delegation with Updatable Proofs 𝑁𝑓𝑠𝑕𝑓 𝐷 𝑀 π‘—βˆ’1 , Ξ  𝑗 , 𝐷 𝑀 𝑗 π‘—βˆˆ[𝐢] 𝐷 𝑀 𝐢 Ξ  : 𝐷 0 β†’ 𝐷 𝑀 Ξ  𝐢 replaces this with 𝐷 0 , Ξ β€², 𝐷 𝑀 𝐢 Update Ξ  : 𝐷 𝑀 𝐢 Verify Ξ  𝐢 𝐷 𝑀 2 A ppend proof for … … … computation Ξ  2 𝐷 𝑀 2 performed Ξ  β€² Verify Ξ  2 𝐷 𝑀 1 Proof grows!! 𝐷 𝑀 1 Ξ  contains 𝐢 proofs Ξ  1 Verify Ξ  1 Ξ  β€² β‰ͺ Ξ  1 + β‹―+ |Ξ  𝐢 | Ξ  𝑗 :𝐷 𝑀 π‘—βˆ’1 β†’ 𝐷 𝑀 𝑗 𝐷 0 𝐷 0 Local extraction nondeterministic suffices!

  12. KPY Delegation 𝐷𝑆𝑇 Homomorphic π‘Ÿ 1 π‘Ÿ 𝑙 encryption 𝑁 𝑦 = 𝑧 π‘Š checks Ξ  𝑧 Ξ  = ? 𝑏 1 𝑏 𝑙 π‘ˆ using Zero-Test [Paneth-Rothblum17] 𝑏 = 𝐺(π‘Ÿ) 𝑦 encoded computation tableau

  13. 2. Delegation with Unambiguous Proofs β€’ Unambiguity of Ciphertexts: any 𝑄 βˆ— (𝐷𝑆𝑇) cannot generate two β€’ Observation: need to use encryption with unambiguity property 𝑆 𝑑 = 𝑛 different ciphertexts that encrypt the same message β€’ 𝑑𝑙 = 𝑑 ← 𝔾 β€’ KPY Encryption: β€’ 𝑑 = 𝑕 𝑆 ∈ 𝔾[𝑦] β€’ 𝑄 βˆ— ↛ 𝑑 = 𝑕 𝑆 ,𝑑 β€² = 𝑕 𝑆 β€² such that 𝑆 𝑑 = 𝑆 β€² 𝑑 = 𝑛 β€’ Unambiguous Proofs: suffices to ensure unambiguity of answers

  14. 𝑧 2. Unambiguity of Answers π‘ˆ β€’ [Kalai-Raz-Rothblum14] for π‘Ÿ ∈ 0,1 β„“ answers are unambiguous 𝑦 β€’ Need unambiguous answers for π‘Ÿ ∈ 𝔾 β„“ 𝑏 = 𝐺(π‘Ÿ) β€’ Observation: If 𝑄 evaluates a multilinear polynomial then can show unambiguity of answers for every π‘Ÿ ∈ 𝔾 β„“ β€’ Idea: Ask 𝑄 to send a β€œ proof of multilinearity ” for his evaluated ciphertexts Notion of local multilinearity!

  15. Proof of Local Multilinearity β€’ 𝑄 homomorphically evaluates 𝐺(π‘Ÿ 1 … π‘Ÿ β„“ ) β€’ First attempt: ask 𝑄 for the restriction of 𝐺 in each coordinate Evaluate encryptions of (𝐡 𝑗 , 𝐢 𝑗 ) such that 𝐺 Τ¦ π‘Ÿ = 𝐡 𝑗 β‹… π‘Ÿ 𝑗 + 𝐢 𝑗 π‘Š checks consistency using the Zero-Test β€’ Problem: 𝑄 βˆ— can compute (𝐡 𝑗 , 𝐢 𝑗 ) using πΉπ‘œπ‘‘(π‘Ÿ 𝑗 ) 𝑄 evaluated same β€’ Idea: encrypt Τ¦ π‘Ÿ again without 𝑗 'th coordinate β€œProof of E quality” Ask 𝑄 for 𝐡 𝑗 β€² ,𝐢 𝑗 β€² β€’ Test that 𝐡 𝑗 , 𝐢 𝑗 = 𝐡 𝑗 β€² ,𝐢 𝑗 function on both β€² encryptions

  16. Delegation with Updatable Unambiguous Proofs Not done yet … To show unambiguity of entire proof: β€’ Unambiguity of other ciphertexts in KPY proof β€’ Unambiguity of ciphertexts we added ☺ Equality and Multilinearity proofs β€’ Show unambiguity preserved in recursive proof composition Updatable proofs

  17. Summary β€’ Our Results: β€’ Delegation with updatable and unambiguous proofs based on the KPY bilinear group assumption β€’ PPAD-Hardness based on the quasi-polynomial hardness of the KPY bilinear group assumption (and any hard language) Standard β€’ Power of local proofs: assumptions! β€’ recursive proof composition (updatable proofs) β€’ proof of multilinearity (unambiguous proofs)

  18. Thank you! lisayang@mit.edu

Recommend


More recommend