Definition of Continuity of a Function of Two Variables A function of two variables is continuous at a point (a,b) in an open region R if f(a,b) is equal to the limit of f(x,y) as (x,y) approaches (a,b). In limit notation: lim f ( x , y ) f ( a , b ). ( x , y ) ( a , b ) The function f is continuous in the open region R if f is continuous at every point in R. The following results are presented without proof. As was the case in functions of one variable, continuity is “ user friendly ” . In other words, if k is a real number and f and g are continuous functions at (a,b) then the functions below are also continuous at (a,b): kf ( x , y ) k [ f ( x , y )] f g ( x , y ) f ( x , y ) g ( x , y ) f ( x , y ) fg ( x , y ) f ( x , y )[ g ( x , y )] f / g ( x , y ) if g(a, b) 0 g ( x , y )
Example 1. Find the limit and discuss the continuity of the function. x lim 2 x y ( x , y ) ( 1 , 2 ) Solution x 1 1 1 lim 2 ( x , y ) ( 1 , 2 ) 2 x y 2 ( 1 ) 2 4 The function will be continuous when 2x+y > 0. Example 2. Find the limit and discuss the continuity x of the function. lim 2 x y ( x , y ) ( 1 , 2 ) Solution x 1 1 lim 2 x y 2 ( 1 ) 2 4 ( x , y ) ( 1 , 2 ) y The function will be continuous when 2 x 0 . The function will not be defined when y = -2x.
Partial Derivatives of a Function of Several Variables The partial derivative, with respect to x of a function z f ( , x y ) is: z z f x ( x y , ) f x y ( , ) x z lim lim x x x x x 0 x 0 z f ( x , y ) The partial derivative of the function with respect to x is the ordinary derivative with respect to x calculated on the assumption that y is constant and vice versa.
Example For the following functions, find the partial derivatives: z z , x y 2 sin i z x y 2 2 ii z x y y 1 iii z tan x y iv z x
Solution 2 sin i z x y z z 2 cos x y 2 sin x y y x 2 2 ii z x y z 2 x z 2 y x 2 2 y 2 2 2 x y 2 x y
y 1 iii z tan x 2 / z 1 x z y x / 2 y 2 1 ( / ) y x x 1 ( / ) y x y iv z x z z y 1 y x ln x y x y x
Remark: The partial derivatives of a function of any number of variables are determined similarly as two variables. Example 2 2 3 u x y xtz Find the derivatives of with respect to x, y, z and t. Solution u u 3 2 y 2 x tz x y u u 2 3 3 xtz xz z t
Example 3 sin z y x y / xz yz 3 z show that If x y Solution 3 2 z y cos x y / 1/ y y cos x y / x 2 3 2 z 3 y sin x y / y cos x y / x y / y 2 cos x z x y x y / x + 3 2 y z 3 y sin x y / x y cos x y / y 3 3 y sin x y / 3 z
Partial Derivatives of Higher Orders: z f ( x , y ) The second order partial derivatives of if they exist, are written as: 2 2 z f x y ( , ) z f ( , x y ) f ( , x y ) xx xx x 2 2 x x x 2 ( , 2 z f x y ) z f ( , x y ) f ( , x y ) xy xy x y x y y x 2 ( , 2 z f x y ) z f ( , x y ) f ( , x y ) yx yx y x y x x y 2 2 z f x y ( , ) z f ( , x y ) f ( , x y ) yy yy y 2 2 y y y
Example xy z e x . Find the four 2nd order partial derivatives of Solution z z xy xy xe ye 1 y x 2 2 z z 2 xy 2 xy x e y e 2 y 2 x 2 z 2 z xy xy xye e xy xy xye e x y y x
Example 4 2 u 2 x y u z e . if Compute 2 z y x Solution u 2 2 x y z e x 2 u 2 2 x y z e 2 x 3 u 2 2 x y 2 yz e 2 y x 4 u 2 x y 4 yze 2 z y x
Theorem : z f ( x , y ) If the function and its partial derivatives are defined and continuous at any point and in some neighborhood of it, then at this point 2 2 f f y x x y This is true for a function of any number of variables and any number of successive partial derivatives.
The Chain Rule: Let z be a function of two independent variables u and v , z f u v ( , ) and let u and v be continuous functions of the independent variables x , y : u ( x , y ), v ( x , y ). then: z z u z v x u x v x z z u z v y u y v y
x u x u u y y z u z x v z x v v v y y
Example y z 2 3 Given . Find z u 2 v , u xy v , . x x Solution z z u z v y 2 2 uy 6 v x u x v x 2 x 3 6 y 2 2 xy 4 x y 2 2 u y 6 v 2 x
Example z 2 2 x y 2 z ln( u v ), u e , v x Given . Find . x Solution 2 u 1 z z u z v 2 x y e 2 x 2 2 x u x v x u v u v 2 2 x y ( ue x ) 2 u v e 2 2 u x y 1 2 x 2 2 u v u v
Recommend
More recommend