Oil, Gas and Chemical CFD Conference November 4-5, 2014 DE DEM s solu lutions ns f for O Oil & l & Ga Gas, , and nd C Che hemi mical i l ind ndustries Oleh eh B Baran
Outli line ne DE DEM f for mo modeli ling ng r rock d k drilli lling ng – Breaking rock challenges – Relevant capabilities in STAR-CCM+ – Example without coupling to fluid flow – Using overset mesh to model drill-bit motion DE DEM f for mo modeli ling ng f flo low o of s soli lids i in f n flu luidized b beds – Coarse-grain model in STAR-CCM+ – Industrial scale fluidized bed example • Simulation results for large particle size distribution Summa mmary y 2
Rock C k Cutting ng C Comple lexity y Rock c k cutting ng: : – Complex non-equilibrium and non- steady-state processes – Wide range of length-scales • From grain scale • To bore-hole / reservoir dimensions – Wide range of time-scales • From sound waves period in solids • To hours of advancing drill-bit through inhomogeneous rock Can nu n nume merical mo l modeli ling ng he help lp? – In improving drill-bit design – In optimizing operation parameters (rpm, ROP, WOB) – Reduce bit balling 3
Modeli ling ng R Rock u k using ng DE DEM DE DEM mo models ls i ind ndividuals ls g grains ns i in n Observable les rock k – Rate of penetration (or WOB) – Accurate grain scale physics – Torque • Resolution of grains-cutter contacts – Cuttings attached to drill bit • Can reproduce removing cuttings – Stand pipe pressure – Limited to smaller length scales and timescales Model c l cha halle lleng nges – Simulation time Model i l inputs – Far Boundaries – Bit Design – Calibrating model of rock • Nozzle selection – Simulating flow of drilling fluid in • Teeth configuration, etc borehole – Operation parameters – Reproducing bit balling • Weight on Bit (or ROP), RPM… – Reproducing realistic cutting flows – Rock properties 4
DE DEM P Paralle llel B l Bond nds M Model i l in S n STAR-C -CCM+ The he P Paralle llel B l Bond nds mo model i l int ntroduces a attractive int nter-p -particle le f forces t to t the he p particle le s sys ystem m Model u l uses t the he c conc ncept o of a a ma massle less b bar conne nnecting ng a a p pair o of b bond nded p particle les The he b bar(bond nd) c can t n trans nsmi mit f force a and nd t torque between p n particle les a and nd i it i is a als lso s subje ject t to b breaki king ng und nder lo load – The stress limit values are calculated based on beam theory Referenc nce: : Potyond ndy, D.O , D.O, a , and nd Cund ndall ll, P , P.A .A. 2 . 2004. . “A b bond nded-p -particle le mo model f l for r rock” k”, Int , Int. J . J. R . Rock k Mecha hani nics & & M Mini ning ng S Scienc nces 4 41 p pp. 1 . 1329–1364.
Dr Drilli lling ng e example le s set-u -up 6
Result lts 7
Moni nitoring ng a amo mount nt o of b broken b n bond nds ~75000 p particle les w with h Gaussian s Ga n size d distribution n whi hich h Particle les s settle led a and nd b bond nded with a h about 1 180000 b bond nds Bond nd s streng ngth d h distributed according ng t to Ga Gaussian n distribution ( n (with me h mean v n valu lue of b bond nd s streng ngth = h = 1 1% o of Young ng’s ’s mo modulu lus). . 8
Cont ntact ne network k 9
Cont ntact c colo lored b by ‘B y ‘Bond nd S State’ ’ 10
Modelli lling ng d drilli lling ng f flu luid Possible le i in la n latest v version 9 n 9.0 .06 because o of c compatibili lity o y of DE DEM with O h Overset M Mesh h 11
Result lts w with o h overset me mesh h Rock i k is p perme meable le w with v h void fraction = n =0.4 .4 Solu lution f n for d drilli lling ng f flu luid f flo low w was obtaine ned u using ng 2 2-w -way c y coupli ling ng mo model l Jet f flo low f form no m nozzle les r result lts i in n la large d drag f forces o on b n bond nded g grains ns 12
After d drilli lling ng – – b before C Che hemi mical p l processing ng 13
Industrial S Ind l Scale le F Flu luidized B Bed S Study y outlet d=0.1 m 3 m d=0.6 m distributor 0.46 m Mesh size 0.4 m 20 mm air inlet 14
Amo mount nt a and nd s size d distribution o n of p particle les Fines: Coarse particles: Mass:~ 108 kg Mass:~ 108 kg Diameter: ~500 microns Diameter: ~1mm Count: ~716,000,000 Count: ~80,000,000 15
Coarse Gr Grain P n Particle le DE DEM p parcel r l represent nts s some me nu numb mber o of i ident ntical u l unr nresolv lved p particle les parce rcel l part rticle icles s 𝒆 𝒆↓𝒒𝒃𝒔𝒅𝒇𝒎 = 𝒎 ¡ 𝒆 � 𝒎 ≥𝟐 𝒎↑ 𝟒 -nu 𝒎 -numb mber o of p particle les i in p n parcel l Flu luid-p -particle le i int nteraction ( n (drag, li , lift e etc.) .) a are c calc lcula lated f for a a represent ntative p particle le a and nd a appli lied t to t the he e ent ntire p parcel l – while the contact dynamics are calculated on the parcel scale Faster DEM computing time 16
Coarse Gr Grain De n Details ls Example le f for Gi Gidaspow d drag f force c calc lcula lation n 𝑫↓𝒆 𝑫↓𝒆 = {█□ 𝟓 / 𝟒 ( 𝟐𝟔𝟏 𝟐𝟔𝟏 ( 𝟐− 𝜷↓𝒒 𝜷↓𝒒 )/𝜷↓𝒒 𝜷↓𝒒 𝑺𝒇↓𝒒 𝒇↓𝒒 +𝟐.𝟖𝟔 𝟖𝟔 ) ; ¡ ¡ ¡ ¡ ¡ ¡if ¡ ¡ ¡ 𝜷↓𝒒 𝜷↓𝒒 < 𝜷↓𝒏𝒋𝒐 𝜷↓𝒏𝒋𝒐 ;𝐅𝐬𝐡 𝐅𝐬𝐡𝐯𝐨 ¡ 𝐟𝐫𝐯 𝐫𝐯𝐛𝐮𝐣𝐩𝐨 𝐩𝐨 ¡𝐜𝐛 𝐜𝐛𝐭𝐟𝐞 @ 𝟑𝟓 𝟑𝟓+𝟒.𝟕 𝑺𝒇↓𝒒 𝒇↓𝒒↑ 𝟏.𝟕𝟗𝟖 𝟕𝟗𝟖 /𝑺𝒇↓𝒒 𝒇↓𝒒 𝜷↓𝒒 𝜷↓𝒒↑ −𝟒.𝟕𝟔 𝟕𝟔 ; ¡ ¡ ¡ ¡ ¡ ¡if ¡ ¡ ¡ ¡ 𝜷↓𝒒 𝜷↓𝒒 ≥ 𝜷↓𝒏𝒋𝒐 𝜷↓𝒏𝒋𝒐 ; ¡ ¡𝐗𝐟 𝐗𝐟𝐨 ¡𝐙𝐯 𝐙𝐯 ¡𝐧𝐩𝐞 𝐩𝐞𝐟𝐦 ¡ ¡ ¡ ¡ ¡ ¡ ¡ – Here 𝛽↓𝑞 is solid void fraction, 𝛽↓𝑛𝑗𝑜 is the cutoff void fraction (=0.8), 𝑆𝑓↓𝑞 is the particle Reynolds number, 𝑒 is particle diameter 𝐺↓𝑒𝑠𝑏 (𝑞𝑏𝑠𝑑𝑓𝑚) = 𝑚↑ 3 𝟐 / 𝟑 𝝇↓𝒈 𝝇↓𝒈 𝒘↑ 𝒘↑ 𝟑 𝑫↓𝒆 𝑫↓𝒆 𝑩↓ 𝑩↓𝒆 - this drag force is applied to parcel containing 𝑚↑ 3 particles, as a result: Acceleration, velocity and displacement of parcels due to scaled drag is similar to acceleration, velocity and displacement and of fine particles due to original unscaled drag force 17
Parcel S l Size d distribution n Fine: 𝒎 =𝟐𝟗 𝟐𝟗; ¡ ¡ ¡ 𝒎↑ 𝒎↑ 𝟒 =𝟔,𝟗𝟒𝟑 𝟗𝟒𝟑 Fine: 𝒎 =𝟑𝟓 𝟑𝟓; ¡ ¡ ¡ 𝒎↑ 𝒎↑ 𝟒 =𝟐𝟒 𝟐𝟒,𝟗𝟑𝟓 𝟗𝟑𝟓 𝒆 𝒆↓𝒒𝒃𝒔𝒅𝒇𝒎 = 9 mm; 𝒆 𝒆↓𝒒𝒃𝒔𝒅𝒇𝒎 = 12 mm; 𝑶↓ 𝑶↓𝒒𝒃𝒔𝒅𝒇 𝒒𝒃𝒔𝒅𝒇𝒎 𝒎 = 109,000 𝑶↓ 𝑶↓𝒒𝒃𝒔𝒅𝒇 𝒒𝒃𝒔𝒅𝒇𝒎 𝒎 = 46,000 Coarse: 𝒎 =𝟐𝟗 𝟐𝟗; ¡ ¡ ¡ 𝒎↑ 𝒎↑ 𝟒 =𝟔,𝟗𝟒𝟑 𝟗𝟒𝟑 Coarse: 𝒎 =𝟐𝟑 𝟐𝟑; ¡ ¡ ¡ 𝒎↑ 𝒎↑ 𝟒 =𝟐,𝟖𝟑𝟗 𝟖𝟑𝟗 18 𝒆 𝒆↓𝒒𝒃𝒔𝒅𝒇𝒎 = 18 mm; 𝒆 𝒆↓𝒒𝒃𝒔𝒅𝒇𝒎 = 12 mm; 𝑶↓𝒒𝒃𝒔𝒅𝒇 𝑶↓ 𝒒𝒃𝒔𝒅𝒇𝒎 𝒎 = 14,000 𝑶↓ 𝑶↓𝒒𝒃𝒔𝒅𝒇 𝒒𝒃𝒔𝒅𝒇𝒎 𝒎 = 46,000
Size Di Distribution C n Correction t n to P Pressure Dr Drop ( (The heory) y) les 𝑒 𝑒 W We d define ne t the he me mean s n size o of p particle – Equivalent mono-disperse system provides the same total surface area 𝑒 = ∑ 𝑒 ∑𝑗 =1 =1 ↑𝑂 𝑂↓𝑞𝑏𝑠𝑑𝑓 𝑑𝑓𝑚𝑡 ▒𝑚 𝑚↓𝑗↑ 3 𝑒 𝑒↓𝑗↑ 3 /∑𝑗 /∑𝑗 =1 =1 ↑𝑂 𝑂↓𝑞𝑏𝑠𝑑𝑓 𝑑𝑓𝑚𝑡 ▒𝑚 𝑚↓𝑗↑ 3 𝑒 𝑒↓𝑗↑ 2 drop 𝛼𝑄 𝛼𝑄 f The he f frictiona nal p l pressure d for b f for b bed w bed w with s with s h size d h size d distribution distribution n n − 𝛼 𝛼𝑄/𝑀 =150 =150 ( ( 1− 1− 𝛽 𝛽 ↓𝑞 )↑ )↑ 2 /𝛽 𝛽 ↓𝑞 ↑ 3 𝜈 𝜈↓𝑔 𝑣/𝑒 𝑒 ↑ 2 +1.75 +1.75 ( ( 1− 1− 𝛽 𝛽 ↓𝑞 )/ )/𝛽 𝛽 ↓𝑞 ↑ 3 𝜍↓𝑔 𝑣 𝑣↑ 2 /𝑒 𝑒 19
Recommend
More recommend