data structures
play

Data Structures Algorithm Theory WS 2012/13 Fabian Kuhn Examples - PowerPoint PPT Presentation

Chapter 4 Data Structures Algorithm Theory WS 2012/13 Fabian Kuhn Examples Dictionary: Operations: insert( key,value ), delete( key ), find( key ) Implementations: Linked list: all operations take time ( : size of data


  1. Chapter 4 Data Structures Algorithm Theory WS 2012/13 Fabian Kuhn

  2. Examples Dictionary: • Operations: insert( key,value ), delete( key ), find( key ) • Implementations: – Linked list: all operations take ���� time ( � : size of data structure) – Balanced binary tree: all operations take � log � time – Hash table: all operations take ��1� times (with some assumptions) Stack (LIFO Queue): • Operations: push, pull • Linked list: ��1� for both operations (FIFO) Queue: • Operations: enqueue, dequeue • Linked list: ��1� time for both operations Here: Priority Queues (heaps) , Union ‐ Find data structure Algorithm Theory, WS 2012/13 Fabian Kuhn 2

  3. Dijkstra’s Algorithm Single ‐ Source Shortest Path Problem: • Given: graph � � ��, �� with edge weights � � � 0 for � ∈ � source node � ∈ � • Goal: compute shortest paths from � to all � ∈ � Dijkstra’s Algorithm: 1. Initialize � �, � � 0 and � �, � � ∞ for all � � � 2. All nodes are unmarked 3. Get unmarked node � which minimizes ���, �� : For all � � �, � ∈ � , � �, � � min � �, � , � �, � � � � 4. mark node � 5. 6. Until all nodes are marked Algorithm Theory, WS 2012/13 Fabian Kuhn 3

  4. Example ∞ 1 32 ∞ ∞ 3 9 10 23 4 13 ∞ ∞ 3 2 6 2 ∞ ∞ 1 3 ∞ 17 9 19 8 2 1 � 20 ∞ 18 ∞ 1 Algorithm Theory, WS 2012/13 Fabian Kuhn 4

  5. Example ∞ 1 32 ∞ ∞ 3 9 10 23 4 13 � ∞ 3 2 6 2 ∞ �� �� 1 3 ∞ 17 9 19 8 2 1 � 20 ∞ 18 �� �� 1 Algorithm Theory, WS 2012/13 Fabian Kuhn 5

  6. Example ∞ 1 32 � ∞ 3 9 10 23 4 13 � ∞ 3 2 6 2 ∞ � 1 3 ∞ 17 9 19 8 2 1 � 20 ∞ 18 �� �� 1 Algorithm Theory, WS 2012/13 Fabian Kuhn 6

  7. Example � 1 32 � ∞ 3 9 10 23 4 13 � �� �� 3 2 6 2 ∞ � 1 3 ∞ 17 9 19 8 2 1 � 20 ∞ 18 �� �� 1 Algorithm Theory, WS 2012/13 Fabian Kuhn 7

  8. Example � 1 32 � �� �� 3 9 10 23 4 13 � �� �� 3 2 6 2 ∞ � 1 3 ∞ 17 9 19 8 2 1 � 20 ∞ 18 �� �� 1 Algorithm Theory, WS 2012/13 Fabian Kuhn 8

  9. Example � 1 32 � �� �� 3 9 10 23 4 13 � � 3 2 6 2 ∞ � 1 3 ∞ 17 9 19 8 2 1 � 20 ∞ 18 �� �� 1 Algorithm Theory, WS 2012/13 Fabian Kuhn 9

  10. Example � 1 32 � �� �� 3 9 10 23 4 13 � � 3 2 6 2 �� �� � 1 3 �� �� 17 9 19 8 2 1 � 20 ∞ 18 �� �� 1 Algorithm Theory, WS 2012/13 Fabian Kuhn 10

  11. Example � 1 32 � �� �� 3 9 10 23 4 13 � � 3 2 6 2 �� �� � 1 3 �� �� 17 9 19 8 2 1 � 20 �� �� 18 �� �� 1 Algorithm Theory, WS 2012/13 Fabian Kuhn 11

  12. Implementation of Dijkstra’s Algorithm Dijkstra’s Algorithm: 1. Initialize � �, � � 0 and � �, � � ∞ for all � � � 2. All nodes are unmarked 3. Get unmarked node � which minimizes ���, �� : For all � � �, � ∈ � , � �, � � min � �, � , � �, � � � � 4. mark node � 5. 6. Until all nodes are marked Algorithm Theory, WS 2012/13 Fabian Kuhn 12

  13. Priority Queue / Heap • Stores ( key,data ) pairs (like dictionary) • But, different set of operations: • Initialize ‐ Heap : creates new empty heap • Is ‐ Empty : returns true if heap is empty • Insert ( key,data ): inserts ( key,data ) ‐ pair, returns pointer to entry • Get ‐ Min : returns ( key,data ) ‐ pair with minimum key • Delete ‐ Min : deletes minimum ( key,data ) ‐ pair • Decrease ‐ Key ( entry,newkey ): decreases key of entry to newkey • Merge : merges two heaps into one Algorithm Theory, WS 2012/13 Fabian Kuhn 13

  14. Implementation of Dijkstra’s Algorithm Store nodes in a priority queue, use ���, �� as keys: 1. Initialize � �, � � 0 and � �, � � ∞ for all � � � 2. All nodes are unmarked 3. Get unmarked node � which minimizes ���, �� : mark node � 4. For all � � �, � ∈ � , � �, � � min � �, � , � �, � � � � 5. 6. Until all nodes are marked Algorithm Theory, WS 2012/13 Fabian Kuhn 14

  15. Analysis Number of priority queue operations for Dijkstra: � • Initialize ‐ Heap : |�| • Is ‐ Empty : |�| • Insert : |�| • Get ‐ Min : |�| • Delete ‐ Min : |�| • Decrease ‐ Key : � • Merge : Algorithm Theory, WS 2012/13 Fabian Kuhn 15

  16. Priority Queue Implementation Implementation as min ‐ heap:  complete binary tree, e.g., stored in an array ���� • Initialize ‐ Heap : ���� • Is ‐ Empty : � ��� � • Insert : • Get ‐ Min : � � � ��� � • Delete ‐ Min : � ��� � • Decrease ‐ Key : • Merge (heaps of size � and � , � � � ): ��� ��� �� Algorithm Theory, WS 2012/13 Fabian Kuhn 16

  17. Better Implementation • Can we do better? • Cost of Dijkstra with complete binary min ‐ heap implementation: � � log � • Can be improved if we can make decrease ‐ key cheaper… • Cost of merging two heaps is expensive • We will get there in two steps: Binomial heap  Fibonacci heap Algorithm Theory, WS 2012/13 Fabian Kuhn 17

  18. Definition: Binomial Tree Binomial tree � � of order � � � 0 : � � � � ��� � � � � � Algorithm Theory, WS 2012/13 Fabian Kuhn 18

  19. Binomial Trees � � � � � � � � Algorithm Theory, WS 2012/13 Fabian Kuhn 19

  20. Properties 1. Tree � � has 2 � nodes 2. Height of tree � � is � 3. Root degree of � � is � 4. In � � , there are exactly � nodes at depth � � Algorithm Theory, WS 2012/13 Fabian Kuhn 20

  21. Binomial Coefficients • Binomial coefficient: � � : # of � � element � subsets of a set of size � • Property: � ��� ��� � � ��� � � Pascal triangle: Algorithm Theory, WS 2012/13 Fabian Kuhn 21

  22. Number of Nodes at Depth in Claim: In � � , there are exactly � nodes at depth � � Algorithm Theory, WS 2012/13 Fabian Kuhn 22

  23. Binomial Heap • Keys are stored in nodes of binomial trees of different order � nodes : there is a binomial tree � � or order � iff bit � of base ‐ 2 representation of � is 1 . • Min ‐ Heap Property: Key of node � � keys of all nodes in sub ‐ tree of � Algorithm Theory, WS 2012/13 Fabian Kuhn 23

  24. Example • 10 keys: �2, 5, 8, 9, 12, 14, 17, 18, 20, 22, 25� • Binary representation of � : 11 � � 1011  trees � � , � � , and � � present � � � � � � 5 2 17 9 14 20 8 12 18 25 22 Algorithm Theory, WS 2012/13 Fabian Kuhn 24

  25. Child ‐ Sibling Representation Structure of a node: parent key degree child sibling � � � � � � Algorithm Theory, WS 2012/13 Fabian Kuhn 25

  26. Link Operation • Unite two binomial trees of the same order to one tree:  12 � � ⨁� � ⇒ � ���  • Time: ����  15 20 18   ⨁ 25 40 22 � � � �     30   Algorithm Theory, WS 2012/13 Fabian Kuhn 26

  27. Merge Operation Merging two binomial heaps: • For � � �, �, … , ��� � : If there are 2 or 3 binomial trees � � : apply link operation to merge 2 trees into one binomial tree � ��� � � � � � � � � � �� � �� � � � � � � � � � �� � �� Time: � � � � � � � � � � � �� � �� � � ∪ � � Algorithm Theory, WS 2012/13 Fabian Kuhn 27

  28. Example 9 13 5 2 17 12 18 14 20 8 22 25 Algorithm Theory, WS 2012/13 Fabian Kuhn 28

  29. Operations Initialize : create empty list of trees Get minimum of queue: time ��1� (if we maintain a pointer) Decrease ‐ key at node � : • Set key of node � to new key • Swap with parent until min ‐ heap property is restored • Time: ��log �� Insert key � into queue � : 1. Create queue � � of size 1 containing only � 2. Merge � and � � • Time for insert: ��log �� Algorithm Theory, WS 2012/13 Fabian Kuhn 29

  30. Operations Delete ‐ Min Operation: 1. Find tree � � with minimum root � 2. Remove � � from queue �  queue �′ 3. Children of � form new queue �′′ 4. Merge queues �′ and �′′ • Overall time: ����� �� Algorithm Theory, WS 2012/13 Fabian Kuhn 30

  31. Delete ‐ Min Example 2 5 17 9 14 20 8 12 18 25 22 Algorithm Theory, WS 2012/13 Fabian Kuhn 31

  32. Complexities Binomial Heap ���� • Initialize ‐ Heap : ���� • Is ‐ Empty : � ��� � • Insert : � � • Get ‐ Min : � ��� � • Delete ‐ Min : � ��� � • Decrease ‐ Key : ����� �� • Merge (heaps of size � and � , � � � ): Algorithm Theory, WS 2012/13 Fabian Kuhn 32

Recommend


More recommend