Data Context Adaptation for Accurate Recommendation with Additional Information Hyunsik Jeon, Bonhun Koo, and U Kang Seoul National University IEEE BigData 2019 Hyunsik Jeon (SNU) 1
Outline n Introduction n Proposed Method n Experiments n Conclusion Hyunsik Jeon (SNU) 2
Recommendation Systems Ratings 5 Fantasy 1 5 friendship 3 friendship Action 5 … … 1 Drama 5 Hyunsik Jeon (SNU) 3
Recommendation Systems Ratings 5 Recommendation Fantasy 1 5 friendship 3 friendship Action 5 … … 1 Drama 5 Hyunsik Jeon (SNU) 4
Problem Definition (Data Context-Aware Recommendation) n Given : rating matrix ! , an auxiliary matrix " q ! : sparse rating matrix q " : social networks or item-genre relationships n Goal : to predict unseen rating values in ! Item User Genre 1 2 3 4 5 1 2 3 4 5 User 1 2 3 4 5 User Item 5 ? ? 2 1 1 1 1 0 0 1 0 1 1 1 ? ? 2 ? ? 2 2 0 0 1 0 0 2 1 1 3 ? ? ? ? 3 3 0 1 1 0 0 3 1 1 ? 3 1 ? ? 4 4 4 0 0 1 1 0 1 1 5 ? ? 2 ? 5 5 5 0 0 0 1 1 1 1 User-Movie Matrix Movie-Genre Matrix User-User Matrix ! matrix " matrices q Users want to be provided items that they will give high ratings. Hyunsik Jeon (SNU) 5
Collective Matrix Factorization n Collective Matrix Factorization (CMF) is the most dominant method in data context-aware recommendation n Key idea of CMF q Factorize two matrices while sharing the common latent factor genre + item # item genre user item ≈ ) item # user " ! $,& ≈ ( $ &,* - , , - & & . * Item-Genre User-Item inner-product inner-product Matrix ) Rating Matrix ! Hyunsik Jeon (SNU) 6
Details Collective Matrix Factorization genre + item # item genre user item ≈ ) item # user " ! $,& ≈ ( $ &,* , , - - & & . * Item-Genre User-Item inner-product inner-product Matrix ) Rating Matrix ! n Inference and loss q ! $ , ! ' ( ' - , " #$ = & # + $, = ( $ 0 + 0 + / / 0 ∑ #,$ ∈3 4 ! 0 ∑ $,, ∈3 7 ! q . = " #$ − " #$ + $, − + $, 0 + ( : 0 + - 8 0 ) , where 0 ( & : : n " is rating matrix, + is additional matrix, n & is user latent matrix, ( is item latent matrix, n - is additional context matrix (e.g., genre). Hyunsik Jeon (SNU) 7
Details Collective Matrix Factorization n CMF is extended to biased-CMF if bias terms are added. ' 1 0 + 2 * , + 2 q ! $ + * + + * , , ! ' ( " #$ = & # / $0 = ( * 3 $ 6 + 6 + 5 5 6 ∑ #,$ ∈9 : ! 6 ∑ $,0 ∈9 < ! q 4 = " #$ − " #$ / $0 − / $0 6 + ( ? 6 + 1 = 6 ) 6 ( & ? ? q where n " is rating matrix, / is additional matrix, n & is user latent matrix, ( is item latent matrix, n 1 is additional context matrix (e.g., genre), n * + , * , , 2 * , , and 2 * 3 are 1-dimensional bias terms. Hyunsik Jeon (SNU) 8
Motivation n Previous works have the following limitations: q 1) Lack of consideration for the fact that data contexts of rating auxiliary matrices are different q 2) Restricted capability of expressing independent information of users or items (e.g., biases) q 3) To predict entries via an inner-product ( linear ) How to address these limitations? Hyunsik Jeon (SNU) 9
Outline n Introduction n Proposed Method n Experiments n Conclusion Hyunsik Jeon (SNU) 10
Key Ideas n A novel approach for data context-aware recommendation n 1) Data context adaptation by ! " and ! # q To consider differences between $ and % n 2) Latent interaction/independence factors q No size limit for latent independence factors n 3) Fully-connected neural networks & " and & # q To model non-linear relationships Hyunsik Jeon (SNU) 11
Overall Architecture n Factorize data matrices ! and " item & Rating Data Context Item-Genre Data Context genre ' + ,,# + * ,,# ≈ ≈ ! * ! item & user 2 #,% #,% … … MLP layer MLP layer Rating Matrix * Item-Genre Matrix ! ) . ) ( ) 3 , ∘ ( ) . ( - . # ∘ ( - 0 % ‖. - ‖0 % - 3 , # # # ( ) 3 , ∘ ( ) . ( - . # ∘ ( - 0 % # ) ) ( - 0 % - 4 , . ( ) 3 ( ) . . - ( - . 5 % # , # # # ( ) ( ) ( - ( - ∘ Element-wise Data Context product . 3 0 % # , Adaptation ‖ Concatenation Item User Genre Hyunsik Jeon (SNU) 12
Latent Factors n Latent interaction/independent factors q Participate in different ways to predict an entry item & Rating Data Context Item-Genre Data Context genre ' + ,,# + * ,,# ≈ ≈ ! * ! item & user 2 #,% #,% … … MLP layer MLP layer Rating Matrix * Item-Genre Matrix ! ) . ) ( ) 3 , ∘ ( ) . ( - . # ∘ ( - 0 % ‖. - ‖0 % - 3 # , # # ( ) 3 , ∘ ( ) . ( - . # ∘ ( - 0 % # ) ) ( - 0 % - 4 , . ( ) 3 ( ) . . - ( - . 5 % # , # # # ( ) ( ) ( - ( - ∘ Element-wise Data Context product 3 . 0 % # , Adaptation ‖ Concatenation Item User Genre latent independence vector latent interaction vector Hyunsik Jeon (SNU) 13
Data Context Adaptation n Any models can be used as adaptation functions ! " and ! # q Our choice is a linear projection: " $ % = ' ( $ % , ! = ' ( ) = ' + ) n ! " ) * , ! # ) * , and ! # , - = * * ' + , - q where . " is an projection matrix for / q . # is an projection matrix for 0 q $ % , ) * , and , - are latent interaction vectors Hyunsik Jeon (SNU) 14
Non-linear Modeling n Any non-linear models can be used as predictive functions ! " and ! # q Our choice is a multilayer perceptron (MLP): * " + & ∘ * " - * # - ' ∘ * # 1 0 ' $ ) , $ " # % &' = ! " ( + & / '0 = ! # ( - ) n ' " - # 1 0 ' q where bracket 2 denotes concatenation of vectors q Tanh as activation functions in ! " and ! # q outputs of ! " and ! # are predicted ratings (scalars) Hyunsik Jeon (SNU) 15
Loss Function n Minimize two reconstruction errors for ! and " together q # = 1 − ' ()** + + '()** - / + . 8 / ∑ 1,3 ∈5 6 7 n ()** + = ! 13 − ! 13 / 9:; + / + . 8 / ∑ 3,< ∈5 = 7 n ()** - = " 3< − " / 9:; - 3< q where Ω + and Ω - are observable entries in ! and " , resp. q 9:; + and 9:; - are #2 -regularizations for ! and " , resp. q ' controls the balance of gradients from ()** + and ()** - Hyunsik Jeon (SNU) 16
Regularization n Regularization terms $ + + - $ * ' q !"# $ = ∑ '∈) * ' + + $ + + - $ 1 ∑ .∈ℐ ( 1 + ) + ∑ 3 4 5 . . + 6 + + - 6 1 q !"# 6 = ∑ .∈ℐ 1 + + . . 6 + + - 6 9 7 ∑ 7∈8 ( 9 7 + ) + ∑ 3 4 : + ; + is Frobenius norm of vectors and matrices n n ) is set of users n ℐ is set of items n 8 is set of genres Hyunsik Jeon (SNU) 17
Outline n Introduction n Preliminaries n Experiments n Conclusion Hyunsik Jeon (SNU) 18
Experiments n Experimental questions q Q1. Overall performance n How better is our method compared to competitors? q Q2. Effects of data context adaptation n How does data context adaptation layer affect the performance? q Q3. Effects of interaction/independence factors n How do dimensions of interaction/independence vectors affect the performance? q Q4. Neural Networks n Do deeper structures yield better performance? n Does the activation function help improve performance? Hyunsik Jeon (SNU) 19
Datasets n 3 user-coupled datasets q social network for additional data n 3 item-coupled datasets q item-genre relationships for additional data Hyunsik Jeon (SNU) 20
Competitors n Comparison of our method and competitors Hyunsik Jeon (SNU) 21
Evaluation Metrics n RMSE (Root Mean Square Error) ' $ ∑ " ∑ # % "# − % "# ()*( +,(-./* n MAE (Mean Absolute Error) ∑ " ∑ # | $ % "# − % "# | ()*( +,(-./* Hyunsik Jeon (SNU) 22
Experimental Results n Q1. Overall performance q Our method provides the best accuracy Hyunsik Jeon (SNU) 23
Experimental Results n Q2. Effects of data context adaptation q !"#ℎ%&#'( : no adaptation to each context q )*+ : separate adaptation for each entity Hyunsik Jeon (SNU) 24
Experimental Results n Q3. Effects of interaction/independence factors q The total capacity of model is fixed Hyunsik Jeon (SNU) 25
Experimental Results n Q4-1. Neural Networks (deepness) q ! : DaConA with depth ! Hyunsik Jeon (SNU) 26
Experimental Results n Q4-2. Neural Networks (activation functions) q !"#ℎ%&#'( : DaConA without activation functions Hyunsik Jeon (SNU) 27
Extension n Using multiple auxiliary information q Ratings, social information, and genre information DaConA CMF Hybrid-CDL Biased-CMF 1.08 1.06 1.04 1.02 -9.4% - 6.3 % RMSE 1 0.98 -11.1% 0.96 Best 0.94 0.92 0.9 40 50 60 70 80 90 training set (%) Hyunsik Jeon (SNU) 28
Outline n Introduction n Proposed Method n Experiments n Conclusion Hyunsik Jeon (SNU) 29
Conclusion n We propose a novel approach for data context- aware recommendation q Additional information is given as well as ratings n Our key ideas: q 1) Data context adaptation q 2) Latent interaction/independence factors q 3) Non-linear modeling n DaConA outperforms the SOTA algorithms n Extensive experiments show our ideas help improve performance Hyunsik Jeon (SNU) 30
Thank you ! https://datalab.snu.ac.kr/dacona Hyunsik Jeon (SNU) 31
Recommend
More recommend