darwin self organization and molecules
play

Darwin, self-organization and molecules Peter Schuster Institut fr - PowerPoint PPT Presentation

Darwin, self-organization and molecules Peter Schuster Institut fr Theoretische Chemie, Universitt Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Darwin and the Origin of Life San Sebastian - Donostia, 22.05.2009


  1. Darwin, self-organization and molecules Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Darwin and the Origin of Life San Sebastian - Donostia, 22.05.2009

  2. Web-Page for further information: http://www.tbi.univie.ac.at/~pks

  3. Color patterns on animal skins and wings

  4. 1. Pattern formation in physics and chemistry 2. Pattern formation in biology 3. Darwins natural selection and the origin of life 4. Molecular biology and evolution 5. Evolution in the test tube 6. Complexity in biology

  5. 1. Pattern formation in physics and chemistry 2. Pattern formation in biology 3. Darwins natural selection and the origin of life 4. Molecular biology and evolution 5. Evolution in the test tube 6. Complexity in biology

  6. Change in local concentration = = diffusion + chemical reaction Alan M. Turing, 1912-1954 A.M. Turing. 1952. The chemical basis of morphogenesis. Phil.Trans.Roy.Soc. London B 237 :37-72.

  7. Liesegang rings 1895 Belousov-Zhabotinskii reaction 1959 Pattern formation through chemical self-organization: Liesegang rings through precipitation from oversaturated solutions, space-time patterns of the Belousov-Zhabotinskii reaction, and stationary Turing pattern. Turing pattern: Boissonade, De Kepper 1990

  8. 1. Pattern formation in physics and chemistry 2. Pattern formation in biology 3. Darwins natural selection and the origin of life 4. Molecular biology and evolution 5. Evolution in the test tube 6. Complexity in biology

  9. presumptive mother father Skin patterns in an inbred strain of cats Parents and daughter daughter

  10. Müller‘s mimicry Bates‘ mimicry Different forms of mimicry observed in nature

  11. milk snake Bates‘ mimicry false coral snake coral snake Emsley‘s or Mertens‘ mimicry Different forms of mimicry observed in nature

  12. 1. Pattern formation in physics and chemistry 2. Pattern formation in biology 3. Darwins natural selection and the origin of life 4. Molecular biology and evolution 5. Evolution in the test tube 6. Complexity in biology

  13. Three necessary conditions for Darwinian evolution: 1. Multiplication 2. Variation 3. Selection Empirically recognized principle of natural selection

  14. − f f = = 2 1 s 0 . 1 f 1 Two variants with a mean progeny of ten or eleven descendants

  15. = = = N ( 0 ) 9999 , N ( 0 ) 1 ; s 0 . 1 , 0 . 02 , 0 . 01 1 2 Selection of advantageous mutants in populations of N = 10 000 individuals

  16. time Charles Darwin, The Origin of Species , 6th edition. Everyman‘s Library, Vol.811, Dent London, pp.121-122.

  17. Modern phylogenetic tree: Lynn Margulis, Karlene V. Schwartz. Five Kingdoms . An Illustrated Guide to the Phyla of Life on Earth . W.H. Freeman, San Francisco, 1982.

  18. 1. Pattern formation in physics and chemistry 2. Pattern formation in biology 3. Darwins natural selection and the origin of life 4. Molecular biology and evolution 5. Evolution in the test tube 6. Complexity in biology

  19. Genotype, Genome GCGGATTTAGCTCAGTTGGGAGAGCGCCAGACTGAAGATCTGGAGGTCCTGTGTTCGATCCACAGAATTCGCACCA biochemistry Unfolding of the genotype systems biology molecular biology genetics ‘the new biology structural biology epigenetics is the chemistry of living molecular evolution DNA environment matter’ molecular genetics systems biology RNA bioinfomatics John Kendrew Phenotype protein Manfred Eigen Thomas Cech RNA catalysis Linus Pauling and James D. Watson und Gerhard Braunitzer Emile Zuckerkandl Francis H.C. Crick hemoglobin sequence molecular evolution Max Perutz DNA structure

  20. James D. Watson, 1928-, and Francis H.C. Crick, 1916-2004 Nobel prize 1962 1953 – 2003 fifty years double helix The three-dimensional structure of a short double helical stack of B-DNA

  21. DNA structure and DNA replication

  22. Point mutation

  23. Point mutation

  24. Point mutation

  25. Reconstruction of phylogenies through comparison of molecular sequence data

  26. 1. Pattern formation in physics and chemistry 2. Pattern formation in biology 3. Darwins natural selection and the origin of life 4. Molecular biology and evolution 5. Evolution in the test tube 6. Complexity in biology

  27. RNA sample Time 0 1 2 3 4 5 6 69 70 � ฀ Stock solution: Q RNA-replicase, ATP, CTP, GTP and UTP, buffer Application of the serial transfer technique to RNA-evolution in the test tube

  28. An example of ‘artificial selection’ with RNA molecules or ‘breeding’ of biomolecules

  29. tobramycin RNA aptamer, n = 27 Formation of secondary structure of the tobramycin binding RNA aptamer with K D = 9 nM L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside antibiotic- RNA aptamer complex. Chemistry & Biology 4 :35-50 (1997)

  30. The three-dimensional structure of the tobramycin aptamer complex L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Chemistry & Biology 4 :35-50 (1997)

  31. 1. Pattern formation in physics and chemistry 2. Pattern formation in biology 3. Darwins natural selection and the origin of life 4. Molecular biology and evolution 5. Evolution in the test tube 6. Complexity in biology

  32. The bacterial cell as an example for a simple form of autonomous life Escherichia coli genome: 4 million nucleotides 4460 genes The structure of the bacterium Escherichia coli

  33. August Weismann, 1834-1914 Separation of germ line and soma

  34. Cascades, A � B � C � ... , and networks of genetic control Turing pattern resulting from reaction- diffusion equation ? Intercelluar communication creating positional information Development of the fruit fly drosophila melanogaster : Genetics, experiment, and imago

  35. 4×10 6 nucleotides E. coli : Genome length Number of cell types 1 Number of genes 4 460 Four books, 300 pages each 3×10 9 nucleotides Man : Genome length Number of cell types 200 � 30 000 Number of genes A library of 3000 volumes, 300 pages each Complexity in biology

  36. Wolfgang Wieser. 1998. ‚ Die Erfindung der Individualität ‘ oder ‚ Die zwei Gesichter der Evolution ‘. Spektrum Akademischer Verlag, Heidelberg 1998

  37. (RELATIVE BRAIN MASS x 1000) 2/3 BRITISH TIT Alan C. Wilson.1985. The molecular basis of evolution. Scientific American 253 (4):148-157.

  38. Evolution does not design with the eyes of an engineer, evolution works like a tinkerer. François Jacob. The Possible and the Actual . Pantheon Books, New York, 1982, and Evolutionary tinkering. Science 196 (1977), 1161-1166.

  39. The difficulty to define the notion of „gene”. Helen Pearson, Nature 441 : 399-401, 2006

  40. ENCODE stands for ENC yclopedia O f D NA E lements. ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447 :799-816, 2007

  41. Web-Page for further information: http://www.tbi.univie.ac.at/~pks

Recommend


More recommend