DAI-FREED ANOMALIES IN PARTICLE PHYSICS Miguel Montero ITF, Utrecht University (Work in collaboration with Iñaki García-Etxebarria) Stringpheno 2018
QUICK RECAP Iñaki just explained the Dai- Freed formalism to compute anomalies of fermion systems in d Y dimensions. X Anomalies cancel if exp(2 π i η Y ) is independent of the choice of Y Y 1 Y 2 X To ensure this, we must have exp(2 π i η Y )=1 on any allowed (d+1) manifold.
Dai-Freed anomalies have only been studied in a few systems.
Dai-Freed anomalies have only been studied in a few systems. A priori, any gauge theory could be Dai-Freed anomalous!
Dai-Freed anomalies have only been studied in a few systems. A priori, any gauge theory could be Dai-Freed anomalous! This talk: Apply Dai-Freed to symmetries of interest in particle physics .
Dai-Freed anomalies have only been studied in a few systems. A priori, any gauge theory could be Dai-Freed anomalous! This talk: Apply Dai-Freed to symmetries of interest in particle physics . Is the Standard Model Dai-Freed anomalous?
PLAN OF THE TALK Discrete symmetries Strategy Proton triality Connection to Ibañez-Ross The SM as a Anomalies of semisimple topological Lie groups superconductor GUT’s Spin Z 4 structure SM and MSSM MSSM story
<latexit sha1_base64="pkz0p2giCMIg8+PxIeCvLabiY8U=">ACD3icbZC7TsMwGIWdcivlFmBgYImokIqQqgQhwViVATaKoBepDZHj/GmsOhfZDlIV5SF4BlaY2RArj8DIm+CWDLRwpuP/HMv+PzdhVEjT/NRKC4tLyvl1cra+sbmlr690xFxygm0Scxi3nOxAEYjaEsqGfQSDjh0GXTd0cUk7z4AFzSO7uQ4ATvEw4j6lGCpRo6+N7gOYidzDu28vsNqFRXmteHjl61aybUxl/jVWYKirUcvSvgReTNIRIEoaF6FtmIu0Mc0kJg7wySAUkmIzwEPrKRjgEYWfTBXLj0I+5IQMwpuf3QyHQoxDV3VCLAMxn02G/2X9VPrndkajJUQEVRmZ8yQ8bGhIPhUQ5EsrEymHCqfmQAHNMpKI184pQ6wTg5RXFxJon8Nd0TuqWbduTquNZkGnjPbRAaohC52hBrpCLdRGBOXoCT2jF+1Re9XetPefakr7uyiGWkf35wTnCU=</latexit> <latexit sha1_base64="pkz0p2giCMIg8+PxIeCvLabiY8U=">ACD3icbZC7TsMwGIWdcivlFmBgYImokIqQqgQhwViVATaKoBepDZHj/GmsOhfZDlIV5SF4BlaY2RArj8DIm+CWDLRwpuP/HMv+PzdhVEjT/NRKC4tLyvl1cra+sbmlr690xFxygm0Scxi3nOxAEYjaEsqGfQSDjh0GXTd0cUk7z4AFzSO7uQ4ATvEw4j6lGCpRo6+N7gOYidzDu28vsNqFRXmteHjl61aybUxl/jVWYKirUcvSvgReTNIRIEoaF6FtmIu0Mc0kJg7wySAUkmIzwEPrKRjgEYWfTBXLj0I+5IQMwpuf3QyHQoxDV3VCLAMxn02G/2X9VPrndkajJUQEVRmZ8yQ8bGhIPhUQ5EsrEymHCqfmQAHNMpKI184pQ6wTg5RXFxJon8Nd0TuqWbduTquNZkGnjPbRAaohC52hBrpCLdRGBOXoCT2jF+1Re9XetPefakr7uyiGWkf35wTnCU=</latexit> <latexit sha1_base64="pkz0p2giCMIg8+PxIeCvLabiY8U=">ACD3icbZC7TsMwGIWdcivlFmBgYImokIqQqgQhwViVATaKoBepDZHj/GmsOhfZDlIV5SF4BlaY2RArj8DIm+CWDLRwpuP/HMv+PzdhVEjT/NRKC4tLyvl1cra+sbmlr690xFxygm0Scxi3nOxAEYjaEsqGfQSDjh0GXTd0cUk7z4AFzSO7uQ4ATvEw4j6lGCpRo6+N7gOYidzDu28vsNqFRXmteHjl61aybUxl/jVWYKirUcvSvgReTNIRIEoaF6FtmIu0Mc0kJg7wySAUkmIzwEPrKRjgEYWfTBXLj0I+5IQMwpuf3QyHQoxDV3VCLAMxn02G/2X9VPrndkajJUQEVRmZ8yQ8bGhIPhUQ5EsrEymHCqfmQAHNMpKI184pQ6wTg5RXFxJon8Nd0TuqWbduTquNZkGnjPbRAaohC52hBrpCLdRGBOXoCT2jF+1Re9XetPefakr7uyiGWkf35wTnCU=</latexit> <latexit sha1_base64="pkz0p2giCMIg8+PxIeCvLabiY8U=">ACD3icbZC7TsMwGIWdcivlFmBgYImokIqQqgQhwViVATaKoBepDZHj/GmsOhfZDlIV5SF4BlaY2RArj8DIm+CWDLRwpuP/HMv+PzdhVEjT/NRKC4tLyvl1cra+sbmlr690xFxygm0Scxi3nOxAEYjaEsqGfQSDjh0GXTd0cUk7z4AFzSO7uQ4ATvEw4j6lGCpRo6+N7gOYidzDu28vsNqFRXmteHjl61aybUxl/jVWYKirUcvSvgReTNIRIEoaF6FtmIu0Mc0kJg7wySAUkmIzwEPrKRjgEYWfTBXLj0I+5IQMwpuf3QyHQoxDV3VCLAMxn02G/2X9VPrndkajJUQEVRmZ8yQ8bGhIPhUQ5EsrEymHCqfmQAHNMpKI184pQ6wTg5RXFxJon8Nd0TuqWbduTquNZkGnjPbRAaohC52hBrpCLdRGBOXoCT2jF+1Re9XetPefakr7uyiGWkf35wTnCU=</latexit> Once local anomalies cancel, η is a bordism invariant: exp(2 π i η Y 1 ) = exp(2 π i η Y 2 ) Y 1 Y 2 Bordism is an equivalence relation, which defines bordism groups Ω Spin d +1 ( BG ) These classify (d+1)-dimensional manifolds, with a principal G-bundle, modulo bordism (bundle extends over bordism too) Computed using AHSS . η is a group homomorphism from the relevant bord. group to U(1).
GENERAL STRATEGY Compute relevant bordism group If it vanishes, there is no new anomaly. Y, compute η . Find a nontrivial manifold If it vanishes, there is no new anomaly. If η is nonvanishing, there is an anomaly.
<latexit sha1_base64="lMCzwiqluI+wZYZP5w4M6rFZjQ=">AHKXicvVPb9MwFM8GLaP82+AGF4sVK0Pt5GT/epqmoTFuGyrdJuYucly3jZY4WeyAJi8HPg0HLvBRuAFXPgRXnLbmq5DI09ydHze7/n3sv1rMb+Z6QCH2fmLxs1C8NXW7dOfuvfsPpmce7ogwiSlr0NAP4z2XCOZ7nDWkJ32F8WMBK7Pdt3DF5l/9x2LhRfyN/I4Ys2AdLjX9iR2uTMFB5jl3U8riRxE5/EqTqhJ/RUTtIS7mZHl0o4SHzpxeF7ZafqearKOCy67bVZlpOYd+r0kCrmqpoqnCRwlp9T5nULwVsA5xWgeqHnk8Ndc357JgDGmGYuyqxZKSxAgaEbLsBFuASX4QqsaUQ/j3K9YdpzZQDB4FRXvU1Hto493oB6X/tPcfCyqMWhqFwyfBVcbT6oDKtV0FugWj3natQj0z5c1WTwektfGlt6w7Sysv8pFYDyE8EuFBxHthH5UFofFOye2Ry3GFHoHYtf6G+NaBb+Ds6Zg6bKsObuSH6YVjl8k6cB43PbsNZrmw4K3rVrgZCKJRzntZnZ9/nvrXzqLV8uiK0J5DoAZb52NQmd6Fs2jnoCLijVQZo2BbDvTv3ArpEnAuKQ+EWLfQpFsKhLr0egzPUsTwSJCD0mH7WuVk4CJpuoN8RQ8a4cxkF0GevthrCKBEMeBqzFZDWLUlxnH+fYT2a41lcejRDJONUT72okPZAiytwC0vJhR6R9rhdDY01kC2iUxoVK/GDkWocvpslauBHX6IqQl3SlrtC8XlR173kLz1mt7dm190LMp4nx1DANy1gx1oxXxrbRMGjhQ+Fj4XPhS/FT8WvxW/FHzo5MYh5ZOSk+PM3S28osg=</latexit> <latexit sha1_base64="lMCzwiqluI+wZYZP5w4M6rFZjQ=">AHKXicvVPb9MwFM8GLaP82+AGF4sVK0Pt5GT/epqmoTFuGyrdJuYucly3jZY4WeyAJi8HPg0HLvBRuAFXPgRXnLbmq5DI09ydHze7/n3sv1rMb+Z6QCH2fmLxs1C8NXW7dOfuvfsPpmce7ogwiSlr0NAP4z2XCOZ7nDWkJ32F8WMBK7Pdt3DF5l/9x2LhRfyN/I4Ys2AdLjX9iR2uTMFB5jl3U8riRxE5/EqTqhJ/RUTtIS7mZHl0o4SHzpxeF7ZafqearKOCy67bVZlpOYd+r0kCrmqpoqnCRwlp9T5nULwVsA5xWgeqHnk8Ndc357JgDGmGYuyqxZKSxAgaEbLsBFuASX4QqsaUQ/j3K9YdpzZQDB4FRXvU1Hto493oB6X/tPcfCyqMWhqFwyfBVcbT6oDKtV0FugWj3natQj0z5c1WTwektfGlt6w7Sysv8pFYDyE8EuFBxHthH5UFofFOye2Ry3GFHoHYtf6G+NaBb+Ds6Zg6bKsObuSH6YVjl8k6cB43PbsNZrmw4K3rVrgZCKJRzntZnZ9/nvrXzqLV8uiK0J5DoAZb52NQmd6Fs2jnoCLijVQZo2BbDvTv3ArpEnAuKQ+EWLfQpFsKhLr0egzPUsTwSJCD0mH7WuVk4CJpuoN8RQ8a4cxkF0GevthrCKBEMeBqzFZDWLUlxnH+fYT2a41lcejRDJONUT72okPZAiytwC0vJhR6R9rhdDY01kC2iUxoVK/GDkWocvpslauBHX6IqQl3SlrtC8XlR173kLz1mt7dm190LMp4nx1DANy1gx1oxXxrbRMGjhQ+Fj4XPhS/FT8WvxW/FHzo5MYh5ZOSk+PM3S28osg=</latexit> <latexit sha1_base64="lMCzwiqluI+wZYZP5w4M6rFZjQ=">AHKXicvVPb9MwFM8GLaP82+AGF4sVK0Pt5GT/epqmoTFuGyrdJuYucly3jZY4WeyAJi8HPg0HLvBRuAFXPgRXnLbmq5DI09ydHze7/n3sv1rMb+Z6QCH2fmLxs1C8NXW7dOfuvfsPpmce7ogwiSlr0NAP4z2XCOZ7nDWkJ32F8WMBK7Pdt3DF5l/9x2LhRfyN/I4Ys2AdLjX9iR2uTMFB5jl3U8riRxE5/EqTqhJ/RUTtIS7mZHl0o4SHzpxeF7ZafqearKOCy67bVZlpOYd+r0kCrmqpoqnCRwlp9T5nULwVsA5xWgeqHnk8Ndc357JgDGmGYuyqxZKSxAgaEbLsBFuASX4QqsaUQ/j3K9YdpzZQDB4FRXvU1Hto493oB6X/tPcfCyqMWhqFwyfBVcbT6oDKtV0FugWj3natQj0z5c1WTwektfGlt6w7Sysv8pFYDyE8EuFBxHthH5UFofFOye2Ry3GFHoHYtf6G+NaBb+Ds6Zg6bKsObuSH6YVjl8k6cB43PbsNZrmw4K3rVrgZCKJRzntZnZ9/nvrXzqLV8uiK0J5DoAZb52NQmd6Fs2jnoCLijVQZo2BbDvTv3ArpEnAuKQ+EWLfQpFsKhLr0egzPUsTwSJCD0mH7WuVk4CJpuoN8RQ8a4cxkF0GevthrCKBEMeBqzFZDWLUlxnH+fYT2a41lcejRDJONUT72okPZAiytwC0vJhR6R9rhdDY01kC2iUxoVK/GDkWocvpslauBHX6IqQl3SlrtC8XlR173kLz1mt7dm190LMp4nx1DANy1gx1oxXxrbRMGjhQ+Fj4XPhS/FT8WvxW/FHzo5MYh5ZOSk+PM3S28osg=</latexit> <latexit sha1_base64="lMCzwiqluI+wZYZP5w4M6rFZjQ=">AHKXicvVPb9MwFM8GLaP82+AGF4sVK0Pt5GT/epqmoTFuGyrdJuYucly3jZY4WeyAJi8HPg0HLvBRuAFXPgRXnLbmq5DI09ydHze7/n3sv1rMb+Z6QCH2fmLxs1C8NXW7dOfuvfsPpmce7ogwiSlr0NAP4z2XCOZ7nDWkJ32F8WMBK7Pdt3DF5l/9x2LhRfyN/I4Ys2AdLjX9iR2uTMFB5jl3U8riRxE5/EqTqhJ/RUTtIS7mZHl0o4SHzpxeF7ZafqearKOCy67bVZlpOYd+r0kCrmqpoqnCRwlp9T5nULwVsA5xWgeqHnk8Ndc357JgDGmGYuyqxZKSxAgaEbLsBFuASX4QqsaUQ/j3K9YdpzZQDB4FRXvU1Hto493oB6X/tPcfCyqMWhqFwyfBVcbT6oDKtV0FugWj3natQj0z5c1WTwektfGlt6w7Sysv8pFYDyE8EuFBxHthH5UFofFOye2Ry3GFHoHYtf6G+NaBb+Ds6Zg6bKsObuSH6YVjl8k6cB43PbsNZrmw4K3rVrgZCKJRzntZnZ9/nvrXzqLV8uiK0J5DoAZb52NQmd6Fs2jnoCLijVQZo2BbDvTv3ArpEnAuKQ+EWLfQpFsKhLr0egzPUsTwSJCD0mH7WuVk4CJpuoN8RQ8a4cxkF0GevthrCKBEMeBqzFZDWLUlxnH+fYT2a41lcejRDJONUT72okPZAiytwC0vJhR6R9rhdDY01kC2iUxoVK/GDkWocvpslauBHX6IqQl3SlrtC8XlR173kLz1mt7dm190LMp4nx1DANy1gx1oxXxrbRMGjhQ+Fj4XPhS/FT8WvxW/FHzo5MYh5ZOSk+PM3S28osg=</latexit> SEMISIMPLE LIE GROUPS Ω Spin ( BG ) d G 0 1 2 3 4 5 6 7 8 SU (2) 0 2 Z 0 4 Z Z Z 2 Z 2 Z 2 Z 2 SU ( n > 2) 0 2 Z 0 – – – Z Z 2 Z 2 USp (2 k > 2) 0 2 Z 0 5 Z Z Z 2 Z 2 Z 2 Z 2 U (1) 0 0 – – – Z Z 2 Z 2 ⊕ Z Z ⊕ Z Spin ( n ≥ 8) 0 2 Z 0 – – – Z Z 2 Z 2 SO ( n ≥ 3) e ( Z 2 , Z 2 ) 0 e ( Z , Z ⊕ Z 2 ) 0 – – – Z Z 2 0 2 Z 0 0 0 2 Z E 6 , E 7 , E 8 Z Z 2 Z 2 0 2 Z 0 – – – G 2 Z Z 2 Z 2 0 2 Z 0 0 0 – F 4 Z Z 2 Z 2
Recommend
More recommend