DAE δ ALUS A Path to Measuring δ CP Using Cyclotron Decay-at-Rest Neutrino Sources NOW 2012 Matt Toups, MIT M. Toups, MIT -- NOW 2012 1
A two-part talk: 1. The experimental design for the flagship measurement: CP Violation 2. Implementing a phased approach with rich physics, highlighting: The IsoDAR sterile neutrino program (Phase II) M. Toups, MIT -- NOW 2012 2
A two-part talk: 1. The experimental design for the flagship measurement: CP Violation 2. Implementing a phased approach with rich physics, highlighting: The IsoDAR sterile neutrino program (Phase II) M. Toups, MIT -- NOW 2012 3
ν μ → ν π Δ 2 ( ) ( ) Oscillations at 2 ~ E L m e 13 Are Sensitive to δ CP in a vacuum… } } We want to see terms depending on terms depending on if δ is nonzero mass splittings mixing angles M. Toups, MIT -- NOW 2012 4
ν μ → ν Use L/E Dependence Of P ( ) e to Extract δ CP in a vacuum… } } We want to see terms depending on terms depending on if δ is nonzero mass splittings mixing angles M. Toups, MIT -- NOW 2012 5
ν ( ) The Traditional Approach To Appearance: e Single neutrino source Multiple neutrino detectors at different baselines ν The DAE δ ALUS Approach To Appearance: e Multiple neutrino sources at different baselines Single neutrino detector M. Toups, MIT -- NOW 2012 6
δ = π/2 δ = 0 Distance Constrains rise Osc. maximum Constrains of probability Initial flux wave Near Mid-distance Far Neutrino Neutrino Neutrino Source Source Source Single Ultra-large Detector _ With Free Protons as IBD ( ν e + p � e + + n) Targets (Oil or Water) M. Toups, MIT -- NOW 2012 7
The DAE δ ALUS Neutrino Source π + decay-at-rest (DAR) beam: p + C → Shape driven by nature! ν μ Only the normalization ν e varies from beam to beam ν μ A great place to search for _ _ ν μ � ν e M. Toups, MIT -- NOW 2012 8
δ = π/2 δ = 0 8 km 20 km Constrains rise Osc. maximum Constrains of probability at ~40 MeV Initial flux wave Near Mid-distance Far Neutrino Neutrino Neutrino Source Source Source ν μ ν e Three ν μ Identical Beams M. Toups, MIT -- NOW 2012 9
Beam Off Beam Off 100 μ s 400 μ s 400 μ s 100 μ s 100 μ s 1.5 km Accelerator 400 μ s 400 μ s 100 μ s 100 μ s 8 km 100 μ s Accelerators 20 km 100 μ s 400 μ s 400 μ s 100 μ s 100 μ s Accelerators Constrains rise Constrains of probability Osc. maximum Initial flux wave Near Mid-distance Far Neutrino Neutrino Neutrino Source Source Source You need to know which One is providing the beam. So they have to turn on/off. The duty factor is flexible, But beam-off time is needed. M. Toups, MIT -- NOW 2012 10
Measurement strategy: Using the near neutrino source measure absolute flux normalization with ν e -e events to ~1%, Also, measure the ν e C event rate. At far and mid-distance neutrino source, Compare predicted to measured ν e C event rates to get the relative flux normalizations between 3 sites For all three neutrino sources, _ _ given the known flux, fit for the ν μ → ν e signal with δ as a free parameter M. Toups, MIT -- NOW 2012 11
We use multiple “Accelerator Units” to produce our DAR beam, Constructed out of Cyclotrons, Which accelerate H 2 to 800 MeV p e - p Injector Cyclotron (Compact, resistive) Primary Cyclotron (Separated sector, Target/shielding super-conducting) The result is a decay-at-rest-flux _ _ That can be used for ν μ � ν e searches M. Toups, MIT -- NOW 2012 12
13 Submitted to NIM M. Toups, MIT -- NOW 2012
Where can DAE δ ALUS run? LENA is an outstanding possibility! Coverage of CP violation parameter at LENA, 10 years 3 σ evidence for CP violation This gets even better if it can be played against a conventional beam! M. Toups, MIT -- NOW 2012 14
A two-part talk: 1. The experimental design for the flagship measurement: CP Violation 2. Implementing a phased approach with rich physics, highlighting: The IsoDAR sterile neutrino program (Phase II) M. Toups, MIT -- NOW 2012 15
Design Principle: “Plug-and-play” DAE δ ALUS Target/ Ion Injector Superconducting source Cyclotron Ring Cyclotron Dump Near Site Mid Site Ion Injector Superconducting Target/ Cyclotron (8 km) source Ring Cyclotron Dump Ion Injector Target/ source Cyclotron Dump Superconducting Ring Cyclotron Injector Ion Target/ Far Site Cyclotron source Dump (20 km) Injector Ion Target/ Cyclotron source Dump Superconducting Ring Cyclotron Injector Ion Target/ Cyclotron source Dump M. Toups, MIT -- NOW 2012 16
The “plug-and-play design” of what we are building Target/ Ion Superconducting Injector Dump source Ring Cyclotron Leads to an obvious multiphase development plan M. Toups, MIT -- NOW 2012 17
Phase I: The Ion Source Target/ Ion Superconducting Injector Dump source Ring Cyclotron M. Toups, MIT -- NOW 2012 18
The big issue… Space Charge Effects If you inject a lot of charge here, it repels & beam “blows up” As radii get closer together, bunches at different radii interact To reduce the “space charge” at injection… we use H 2 2 protons per unit e - p p of +1 charge Two options for extraction: - Stripping foil - “Classical” Electrostatic Septum M. Toups, MIT -- NOW 2012 19
Ion Source: By our collaborators at INFN Catania. + ! Produces sufficient H 2 Beam to be characterized at Best Cyclotrons, Inc, Vancouver This winter (NSF funded) Test results to be available by Cyclotrons’13 Conference, Sept 2013, Vancouver M. Toups, MIT -- NOW 2012 20
Open Issue: Lorentz stripping + beam in the 800 MeV SRC Can induce unacceptable losses of H 2 Should be OK as long as high vibrational states are eliminated We are doing tests at Oakridge to study vibrational states from ion sources M. Toups, MIT -- NOW 2012 21
So: some important questions remain for DAE δ ALUS, But we have a workable ion source for a Phase II Ion Superconducting Target/ Injector Dump source Ring Cyclotron IsoDAR: A sterile neutrino experiment M. Toups, MIT -- NOW 2012 22
So: some important questions remain for DAE δ ALUS, But we have a workable ion source for a Phase II Ion Superconducting Target/ Injector Dump source Ring Cyclotron IsoDAR: A sterile neutrino experiment Accepted for publication in PRL M. Toups, MIT -- NOW 2012 23
Base Design Injector: + 60 MeV/n @ 5 mA of H 2 Industry (IBA, BEST) produces ~1 mA p machines for isotope production: M. Toups, MIT -- NOW 2012 24
At 60 MeV/n, we can use this to make isotopes that beta-decay-at-rest… IsoDAR 8 Li � 8 Be + e - + ν e In liquid scintillator ν e e + p n M. Toups, MIT -- NOW 2012 25
_ Use this low-energy pure ν e source to search for sterile neutrinos! 1 kton LS detector 16.5 m Potential locations: KamLAND, SNO+, Borexino M. Toups, MIT -- NOW 2012 26
Outstanding sensitivity to sterile neutrinos 95% C.L à la the reactor neutrino anomaly… …can be ruled out at > 5 σ in 4 months of running! Ability to discriminate between models! 3+1 3+2 (5 years of running) M. Toups, MIT -- NOW 2012 27
Along with sterile neutrino searches… Searches for new particles produced in dump Studies of antineutrino-electron scattering More ideas welcome! The science capability is outstanding. This is of interest to the medical isotope industry! This moves DAE δ ALUS forward! M. Toups, MIT -- NOW 2012 28
Phases III and IV Target/ Ion Base Design Superconducting Injector Dump source Ring Cyclotron Establish the “standard” system And the the high-power system M. Toups, MIT -- NOW 2012 29
DAE δ ALUS Phase III: Target/ Ion Injector Superconducting SRC & source Cyclotron Ring Cyclotron Dump Near Site Target/Dump; Near Accelerator Physics Program Mid Site Ion Injector Superconducting Target/ Cyclotron (8 km) source Ring Cyclotron Dump Many exciting possibilities for a near accelerator physics program: • Short-baseline neutrino oscillation waves in ultra-large liquid scintillator detectors Agarwalla, S. et. al. JHEP 12 (2011), 85 • Coherent neutrino scattering in dark matter detectors Anderson A., et. al. Phys. Rev. D 84, 013008 (2011) • A ctive-to-sterile neutrino oscillations with neutral current coherent neutrino scattering Anderson, A. et. al. Phys. Rev. D 86, 013004 (2012) • Measurement of the weak mixing angle with neutrino-electron scattering at low energy Agarwalla, S. and P. Huber JHEP 8 (2011), 59 M. Toups, MIT -- NOW 2012 30
DAE δ ALUS Phase III: Target/ Ion Injector Superconducting SRC & source Cyclotron Ring Cyclotron Dump Near Site Target/Dump; Near Accelerator Physics Program Mid Site Ion Injector Superconducting Target/ Cyclotron (8 km) source Ring Cyclotron Dump Ion Target/ Injector Phase IV: source Cyclotron Dump Superconducting Modifications Ring Cyclotron to SRC Injector Ion Target/ for high-power Far Site Cyclotron source Dump running at mid & far sites; (20 km) CP violation Injector Program Ion Target/ Cyclotron source Dump Superconducting Ring Cyclotron Injector Ion Target/ Cyclotron source Dump M. Toups, MIT -- NOW 2012 31
Recommend
More recommend