d t e
play

D T E Bi & Bogart 2010. BMC - PowerPoint PPT Presentation

D T E Bi & Bogart 2010. BMC Evol. Biol. D T E Methods estimate the SUBSTITUTION RATE and TIME separately Branch


  1. D T E Bi & Bogart 2010. BMC Evol. Biol.

  2. D T E Methods estimate the SUBSTITUTION RATE and TIME separately Branch lengths = SUBSTITUTION RATE Branch lengths = SUUBSTITION RATE X TIME Branch lengths = TIME Unconstrained methods provide branch length estimates that are the product of SUBSTITUTION RATE and TIME

  3. M  S-R V These models make assumptions about how substitution rate changes over the tree ◮ Global molecular clock (Zuckerkandl & Pauling, 1962) ◮ Local molecular clocks (Kishino, 1990; Rambaut & Bromham 1998; Yang & Yoder, 2003) ◮ Compound Poisson process (Huelsenbeck et al., 2000) ◮ Autocorrelated rates – Log-normal distribution (Thorne et al., 1998; Kishino & Thorne, 2001; Thorne et al., 2002) ◮ Uncorrelated rates (Drummond et al., 2006, Rannala & Yang, 2007, Lepage et al., 2007) ◮ Non-parametric rate smoothing/Penalized likelihood (Sanderson, 1997, 2002) ◮ Ornstein-Uhlenbeck Process (Aris-Brosou & Yang, 2002) ◮ Cox–Ingersol–Ross process (Lepage et al., 2006)

  4. G M C Substitution rate is constant across all lineages Branch lengths = SUBSTITUTION RATE Branch lengths = SUUBSTITION RATE X TIME Branch lengths = TIME (Zuckerkandl & Pauling, 1962)

  5. R  G M C Incorrect models of sequence evolution lead to errors in the estimation of rates ◮ Almost any error in the model can lead to biases (or higher than needed variance) in detecting multiple hits ◮ Assumption of a Poisson clock can be wrong – Branch lengths = SUBSTITUTION RATE even if we correctly count the number of changes, we don’t account for Branch lengths = SUUBSTITION RATE X TIME over-dispersion (higher than Poisson-variance in Branch lengths = TIME the number of substitutions) (Cutler, 2000)

  6. R  G M C Rates of evolution can vary across lineages and over time ◮ mutation rates can vary (mutations per cell cycle, mutations per time, number of cell cycles per generation, Branch lengths = SUBSTITUTION RATE generation time) ◮ strength and targets of Branch lengths = SUUBSTITION RATE X TIME selection can vary ◮ population sizes can Branch lengths = TIME vary

  7. L M C Closely related lineages share the same rate – rates are clustered by subclades rate low high (Kishino, 1990; Rambaut & Bromham 1998; Yang & Yoder, 2003)

  8. C P P Rate changes occur along lineages according to a point process At rate-change events, the new rate is a product of the old rate and a Γ - distributed multiplier rate low high (Huelsenbeck et al., 2000)

  9. A R (L-) Substitution rates evolve gradually over the tree - closely related lineages have similar rates The rate at a node is drawn from a lognormal distribution with a mean equal to the parent rate rate low high (Thorne et al., 1998; Kishino & Thorne, 2001; Thorne et al., 2002)

  10. U R (L-  G) The rates associated with each lineage are drawn, independently from a log-normal or gamma distribution Common models used in BEAST rate low high (Drummond et al., 2006)

  11. � � � � � � � M  S- V Are our models appropriate across all data sets? Polypteriformes Chondrostei Holostei sloth bear Elopomorpha Osteoglossomorpha brown bear Clupeomorpha 100• 100 • 100 • 1.00 0.88 Denticipidae 100• 100 • 100 • 1.00 5.39 t 7 [0.66–1.17] polar bear t 4 [4.2–6.86] 2.75 Gonorynchiformes Ostariophysi [2.1–3.57] t 6 Cypriniformes 100• 100 • 100 • 1.00 cave bear Gymnotiformes 85• 93 • 93 • 1.00 5.05 Siluriformes t 5 [3.9–6.48] Asian Characiformes 99• 97 • 94 • 1.00 t 9 4.08 black bear 100• 100 • 100 • 1.00 12.86 Esociformes Taxa mean age (Ma) [3.11–5.27] [9.77–16.58] t 3 American 76• 94 • 97 • 1.00 4.58 1 Salmoniformes MP• MLu • MLp • Bayesian 14.32 black bear 5 Teleostei t 8 [3.51–5.89] Galaxiiformes 10 t x [9.77–16.58] sun bear 50 Osmeriformes node 95% CI 100 Stomiiformes 19.09 500 American giant 1000 t 2 [14.38–24.79] Argentiniformes 100• 100 • 100 • 1.00 5.66 short-faced bear 5000 10000 Myctophiformes t 10 [4.26–7.34] 20000 spectacled Aulopiformes 35.7 bear Percopsif. + Gadiif. t 1 giant panda Polymixiiformes Acanthomorpha Zeiforms harbor seal Clade r ε "AIC Lampriformes Global expansion of C4 biomass 1. 0.041 0.0017 25.3 Major temperature drop and increasing seasonality Beryciformes Faunal turnover 2. 0.081 * 25.5 3. 0.067 0.37 45.1 Percomorpha 4. 0 * 3.1 Epochs Eocene Oligocene Miocene Plio Plei Bg. 0.011 0.0011 Ophidiiformes Hol Ma 34 23.8 5.3 1.8 0.01 300 200 100 0 MYA Krause et al., 2008. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evol. Biol. 8. Santini et al., 2009. Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol. Biol. 9.

  12. D T E S Program Models/Method r8s Strict clock, local clocks, NPRS, PL ape (R) NPRS, PL multidivtime log-n autocorrelated (plus some others) PhyBayes OU, log-n autocorrelated (plus some others) PhyloBayes CIR, white noise (uncorrelated) (plus some others) BEAST Uncorrelated (log-n & gamma), local clocks TreeTime Dirichlet model, CPP, uncorrelated RevBayes CPP, strict clock, DPP, autocorrelated

  13. P  N T Relaxed clock Bayesian analyses require a prior distribution on node times Uniform prior: the time at a given node has equal probability across the interval Uniform prior between the time of the parent node and the time of the oldest daughter node Birth-death prior: node times are sampled from a stochastic process with parameters for speciation and extinction (and Birth-death prior in some cases taxon sampling)

  14. P  N T A comparison of the prior and posterior estimates of relative node ages using an autocorrelated rates model and the uniform or birth-death priors on node times Lepage et al., 2007. A General Comparison of Relaxed Molecular Clock Models. MBE 24:2669–2680.

  15. C  T Goal: branch lengths in absolute time Time

  16. C  T We have an estimate of the tree topology

  17. C  T Known ages for sampled extant taxa Estimates of minimum ages (from fossils or biogeographical data) that can be applied to nodes on present the tree age fossil Time

  18. C  T Assigning fossils to clades (Benton & Donoghue 2007 Mol. Biol. Evol. 24(1):26–53)

  19. C  T Assigning fossils to clades Crown clade : all living species and their most-recent common ancestor (MRCA) (Benton & Donoghue 2007 Mol. Biol. Evol. 24(1):26–53)

  20. C  T Assigning fossils to clades Stem lineages : purely fossil forms that are closer to their descendant crown clade than any other crown clade (Benton & Donoghue 2007 Mol. Biol. Evol. 24(1):26–53)

  21. C  T Assigning fossils to clades Fossiliferous horizons : the sources in the rock record for relevant fossils (Benton & Donoghue 2007 Mol. Biol. Evol. 24(1):26–53)

  22. P  C N Fossils typically provide MINIMUM bounds for calibrating nodes Uniform ( , ? ) Reliable MAXIMUM bounds are difficult to obtain present age fossil Time

  23. P  C N Different types of distributions that do not Uniform ( , ∞) require maximum bounds can be applied to calibrated Exponential (λ) nodes Gamma (α, β) present age fossil Time

  24. B D   Time

  25. C  R C M ◮ Dependent on and sensitive to fossil calibrations – fossil age estimates and node assignment are not without error ◮ Models are not biologically realistic ◮ Different methods/models can produce very different estimates of the same divergence times ◮ Priors are too informative ◮ Studies comparing methods have produced conflicting and unclear results

Recommend


More recommend