cw 2gev linac error simulations at 10 ma
play

CW 2GeV Linac Error Simulations at 10 mA 80 parameters scanned / New - PowerPoint PPT Presentation

CW 2GeV Linac Error Simulations at 10 mA 80 parameters scanned / New TRACK Jean-Paul Carneiro March 23, 2010 ALIGN Parameter TRACKv39 n ALIGN name xy z z dyn . F dyn . static F static From RFQ exit to end of


  1. CW 2GeV Linac Error Simulations at 10 mA 80 parameters scanned / ”New TRACK” Jean-Paul Carneiro March 23, 2010

  2. ALIGN Parameter TRACKv39 n ALIGN name δ xy δ z φ z δφ dyn . δ F dyn . δφ static δ F static ◮ From RFQ exit to end of the CW 2 GeV linac ( ∼ 400 meters) ◮ 80 errors simulated with TRACKv39 ◮ Each error simulated with 100 runs with 3D SC (10 mA) ◮ 80 × 100=8000 runs with TRACKv39 on FermiGrid

  3. Parameters 01-20 ◮ 11/ Sol. Field δ F dynamic = 0 . 5 % ◮ 01/ Solenoids δ xy = 150 µ m ◮ 12/ Sol. Field δ F dynamic = 1 . 0 % ◮ 02/ Solenoids δ xy = 300 µ m ◮ 13/ Sol. Field δ F dynamic = 1 . 5 % ◮ 03/ Solenoids δ xy = 500 µ m ◮ 14/ Sol. Field δ F dynamic = 2 . 0 % ◮ 04/ Solenoids δ xy = 750 µ m ◮ 15/ Sol. Field δ F dynamic = 2 . 5 % ◮ 05/ Solenoids δ xy = 1000 µ m ◮ 16/ Sol. Field δ F static = 0 . 5 % ◮ 06/ Solenoids δ z = 150 µ m ◮ 17/ Sol. Field δ F static = 1 . 0 % ◮ 07/ Solenoids δ z = 300 µ m ◮ 18/ Sol. Field δ F static = 1 . 5 % ◮ 08/ Solenoids δ z = 500 µ m ◮ 19/ Sol. Field δ F static = 2 . 0 % ◮ 09/ Solenoids δ z = 750 µ m ◮ 20/ Sol. Field δ F static = 2 . 5 % ◮ 10/ Solenoids δ z = 1000 µ m

  4. Parameters 21-40 ◮ 31/ Quads φ z = 1 mrad ◮ 21/ Quads δ xy = 150 µ m ◮ 32/ Quads φ z = 2 mrad ◮ 22/ Quads δ xy = 300 µ m ◮ 33/ Quads φ z = 5 mrad ◮ 23/ Quads δ xy = 500 µ m ◮ 34/ Quads φ z = 7 mrad ◮ 24/ Quads δ xy = 750 µ m ◮ 35/ Quads φ z = 10 mrad ◮ 25/ Quads δ xy = 1000 µ m ◮ 36/ Quads Field δ F dynamic = 0 . 5 % ◮ 26/ Quads δ z = 150 µ m ◮ 37/ Quads Field δ F dynamic = 1 . 0 % ◮ 27/ Quads δ z = 300 µ m ◮ 38/ Quads Field δ F dynamic = 1 . 5 % ◮ 28/ Quads δ z = 500 µ m ◮ 39/ Quads Field δ F dynamic = 2 . 0 % ◮ 29/ Quads δ z = 750 µ m ◮ 40/ Quads Field δ F dynamic = 2 . 5 % ◮ 30/ Quads δ z = 1000 µ m

  5. Parameters 41-60 ◮ 51/ Cav. δ z = 150 µ m ◮ 41/ Quads Field δ F static = 0 . 5 % ◮ 52/ Cav. δ z = 300 µ m ◮ 42/ Quads Field δ F static = 1 . 0 % ◮ 53/ Cav. δ z = 500 µ m ◮ 43/ Quads Field δ F static = 1 . 5 % ◮ 54/ Cav. δ z = 750 µ m ◮ 44/ Quads Field δ F static = 2 . 0 % ◮ 55/ Cav. δ z = 1000 µ m ◮ 45/ Quads Field δ F static = 2 . 5 % ◮ 56/ Cav. φ z = 1 mrad ◮ 46/ Cav. δ xy = 150 µ m ◮ 57/ Cav. φ z = 2 mrad ◮ 47/ Cav. δ xy = 300 µ m ◮ 58/ Cav. φ z = 5 mrad ◮ 48/ Cav. δ xy = 500 µ m ◮ 59/ Cav. φ z = 7 mrad ◮ 49/ Cav. δ xy = 750 µ m ◮ 60/ Cav. φ z = 10 mrad ◮ 50/ Cav. δ xy = 1000 µ m

  6. Parameters 61-80 ◮ 71/ Cav. Phase δφ static = 0 . 5 ◦ ◮ 61/ Cav. Phase δφ dynamic = 0 . 5 ◦ ◮ 72/ Cav. Phase δφ static = 1 . 0 ◦ ◮ 62/ Cav. Phase δφ dynamic = 1 . 0 ◦ ◮ 73/ Cav. Phase δφ static = 1 . 5 ◦ ◮ 63/ Cav. Phase δφ dynamic = 1 . 5 ◦ ◮ 74/ Cav. Phase δφ static = 2 . 0 ◦ ◮ 64/ Cav. Phase δφ dynamic = 2 . 0 ◦ ◮ 75/ Cav. Phase δφ static = 2 . 5 ◦ ◮ 65/ Cav. Phase δφ dynamic = 2 . 5 ◦ ◮ 76/ Cav. Field δ F static = 0 . 5 % ◮ 66/ Cav. Field δ F dynamic = 0 . 5 % ◮ 77/ Cav. Field δ F static = 1 . 0 % ◮ 67/ Cav. Field δ F dynamic = 1 . 0 % ◮ 78/ Cav. Field δ F static = 1 . 5 % ◮ 68/ Cav. Field δ F dynamic = 1 . 5 % ◮ 79/ Cav. Field δ F static = 2 . 0 % ◮ 69/ Cav. Field δ F dynamic = 2 . 0 % ◮ 80/ Cav. Field δ F static = 2 . 5 % ◮ 70/ Cav. Field δ F dynamic = 2 . 5 %

  7. (181) Solenoids δ xy = 150 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  8. (182) Solenoids δ xy = 300 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  9. (183) Solenoids δ xy = 500 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  10. (184) Solenoids δ xy = 750 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  11. (185) Solenoids δ xy = 1000 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  12. (186) Solenoids δ z = 150 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  13. (187) Solenoids δ z = 300 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance z

  14. (188) Solenoids δ z = 500 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  15. (189) Solenoids δ z = 750 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  16. (190) Solenoids δ z = 1000 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  17. (191) Sol. Field δ F dynamic = 0 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  18. (192) Sol. Field δ F dynamic = 1 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  19. (193) Sol. Field δ F dynamic = 1 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  20. (194) Sol. Field δ F dynamic = 2 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  21. (195) Sol. Field δ F dynamic = 2 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  22. (196) Sol. Field δ F static = 0 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  23. (197) Sol. Field δ F static = 1 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  24. (198) Sol. Field δ F static = 1 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  25. (199) Sol. Field δ F static = 2 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  26. (200) Sol. Field δ F static = 2 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  27. (201) Quads δ xy = 150 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  28. (202) Quads δ xy = 300 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  29. (203) Quads δ xy = 500 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  30. (204) Quads δ xy = 750 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  31. (205) Quads δ xy = 1000 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  32. (206) Quads δ z = 150 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  33. (207) Quads δ z = 300 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance z

  34. (208) Quads δ z = 500 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  35. (209) Quads δ z = 750 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  36. (210) Quads δ z = 1000 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  37. (211) Quads φ z = 1 mrad Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  38. (212) Quads φ z = 2 mrad Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  39. (213) Quads φ z = 5 mrad Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  40. (214) Quads φ z = 7 mrad Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  41. (215) Quads φ z = 10 mrad Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  42. (216) Quads Field δ F dynamic = 0 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  43. (217) Quads Field δ F dynamic = 1 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  44. (218) Quads Field δ F dynamic = 1 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  45. (219) Quads Field δ F dynamic = 2 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  46. (220) Quads Field δ F dynamic = 2 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  47. (221) Quads Field δ F static = 0 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  48. (222) Quads Field δ F static = 1 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

Recommend


More recommend