Feasibility study of TULIP: a TUrning LInac for Protontherap LInac for Protontherapy ICTR ICTR- -PHE 2012 Conference PHE 2012 Conference 28.02.2012 A. Degiovanni U. Amaldi, M. Garlasché, K. Kraus, P. Magagnin, U. Oelfke, P. Posocco, P. Riboni, V. Rizzoglio
TULIP: a Single Room Facility project TULIP: a Single Room Facility project Why single room facilities ? – Proton therapy beneficial to at least 12% of X-ray patients (ENLIGHT studies outcome) (ENLIGHT studies outcome) – ~ 2.400 patients/year every 10'000'000 people – 1 proton room every 1.5 Milion inhabitants p y Advantages – Spread the investement cost – Hospital based protontherapy (not dedicated centres) Technical challenges – Size and cost of the machine Size and cost of the machine – Dose delivery modalities – Treatment time 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 2
A cyclinac A cyclinac based based solution solution C-band linac TULIP = C-band linac C band linac Section 1 Section 1 TU TUrning LInac for i LI f Section 2 Protontherapy Line with 2% momentum cyclotron y acceptance acceptance RF rotating joints B Beam dose d delivery RF Power sources Mechanical structure 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 3
The CYCLINAC timeline The CYCLINAC timeline 1993: first Cyclinac proposal proposal * See abs. #227 by S. Verdú Andrés 2007: first CABOTO design 2003: test on LIBO-62 MeV (TERA-CERN-INFN) 2010: 2010: CABOTO-C design (*) 11.2010: LIGHT 1st UNIT inaugurated by CERN DG Prof. R. Heuer (courtesy of [U Amaldi S Braccini and P Puggioni [U. Amaldi, S. Braccini and P. Puggioni, ADAM SA ) ADAM SA.) RAST Vol 2 (2009) 111-131] 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 4
The The linac linac and RF system and RF system Electric field di t ib ti distribution (HFSS) (HFSS) acc. cell coupl. cell on axis on side acc. tanks excited cavity space for quadrupoles TANK un-excited cavity RF cavities in π /2 mode Accelerating TANKS Acc. units with space for PMQs H 11 polarizer (Igor Syratchev, CERN) linear circular polarization l i ti polarization l i ti 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 5
The CYCLINAC timeline The CYCLINAC timeline 1993: first Cyclinac proposal proposal * See abs. #227 by S. Verdú Andrés 2007: first CABOTO design 2003: test on LIBO-62 MeV (TERA-CERN-INFN) 2010: 2010: CABOTO-C design (*) 11.2010: E 0 = 15 LIGHT 1st UNIT MV/m inaugurated by CERN DG E 0 = 16 Prof. R. Heuer MV/m (courtesy of [U Amaldi S Braccini and P Puggioni [U. Amaldi, S. Braccini and P. Puggioni, ADAM SA ) ADAM SA.) RAST Vol 2 (2009) 111-131] 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 6
The choice of the frequency The choice of the frequency TULIP project requires shorter linacs p j q Higher gradients are needed (~35 MV/m) Reliability in terms of BDR High gradient tests (S- and C- band) in collaboration with CLIC collaboration with CLIC see poster #203 (Cyclinac group) Size of RF rotating joints for power transmission p Power source availability C- - band : 5.712 GHz band : 5.712 GHz 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 7
TULIP preliminary design TULIP preliminary design @5.7 GHz (C-band) from 35 to 210 MeV Quantity [unit] Section 1 Section 2 Output energy [MeV] 80 210 Total length [m] g [ ] 3.9 5.9 Avg. E 0 [MV/m] 20-24 32-38 Max. E SURFACE [MV/m] 150 170 Number of units 1 (4) 7 Peak Power [MW] 25 84 Repetition rate [Hz] Repetition rate [Hz] 200 200 200 200 Pulse length [ μ s] 2.5 2.5 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 8
Fast active energy variation Fast active energy variation E) (E) / N(E dN( Energy [MeV] 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 9
Fast Fast active active energy energy variation variation Active energy variation in the range 80-210 MeV Energy spread within 2 mm distal fall-off Active spot scanning with Active spot scanning with tumour tumour multipainting multipainting 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 10
TULIP TULIP beam beam transfer transfer line line With Δ p/p = ±2% Δ R/R = ± 7% R E p 1 1 . 8 8 3 3 . 5 5 R E p For R = 30 cm Δ R = ± 2.1 cm 30 5 30.5 29.4 31.7 cm cm 28.2 cm 32.9 cm cm 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 11
Supporting structure Supporting structure C-band linac linac Section I Section II [kg] [kg] Linac Linac 340 340 460 460 Beam 3400 4800 Structure Ancillaries 640 860 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 12
TULIP Mechanical Design TULIP Mechanical Design Bearings Rot axis Rot. axis Actuators 2 1 1 3 3 Total estimated 60 60 weight [tons] Max ang acceleration acceleration 0.5 0.5 [rad/s 2 ] Max rotation 1.5 speed* [rpm] speed [rpm] * derived from norm EN 60601 and max vel considerations 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 13
Novel Novel study study of of dynamic dynamic dose dose delivery delivery • simulation of dynamic delivery via computer software • based on treatment plan data for a static dose delivery • dynamic parameters (repetition rate, v Gantry , v Couch ) Plan data: D ij matrices ij Spot positions TPS: Spot weights Dynamic dose Dose Calculation of calculation l l ti di t ib ti distribution static plan Tulip machine parameters: Gantry speed y Repetition rate Couch speed Number of protons more information: Poster 156 by Kim Kraus (DKFZ Heidelberg) more information: Poster 156 by Kim Kraus (DKFZ, Heidelberg) 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 14
Novel Novel study study of of dynamic dynamic dose dose delivery delivery • dynamic dose delivery to a cylindrical target volume cylindrical target volume • different combinations of dynamic parameters the higher the gantry speed the the higher the gantry speed the higher must be the repetition rate to deliver all spots D Diff = D dyn(f = 100Hz, v Gantry = 1°/s) - D static Difference dose distribution : Good agreement of the dynamic and static dose distributions within the target! within the target! 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 15
Summary Summary First design in C-band for a single room facility: Linac and RF design Cyclinac M Mechanical design concept h i l d i Novel dose delivery Future developments: Compact New dose TULIP beam line beam line de delivery e y - Optimization of Section 1 Optimization of Section 1 - Final mechanical spec. New Combine acceleration mechanical Combine acceleration design g and gantry flexibility with and gantry flexibility with d d t t fl fl ibilit ibilit ith ith active energy variation active energy variation 28.02.2012 ICTR-PHE 2012 - A. Degiovanni 16
Recommend
More recommend