course summary thus far
play

Course Summary (thus far) F Neural Encoding What makes a neuron - PDF document

CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons R. Rao, 528: Lecture 8 1 Lecture figures are from Dayan & Abbotts book Course Summary (thus far) F Neural Encoding What makes a neuron fire? (STA,


  1. CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons R. Rao, 528: Lecture 8 1 Lecture figures are from Dayan & Abbott’s book Course Summary (thus far) F Neural Encoding What makes a neuron fire? (STA, covariance analysis) Poisson model of spiking F Neural Decoding Spike-train based decoding of stimulus Stimulus Discrimination based on firing rate Population decoding (Bayesian estimation) F Single Neuron Models RC circuit model of membrane Integrate-and-fire model Conductance-based Models R. Rao, 528: Lecture 8 2

  2. Today’s Agenda F Computation in Networks of Neurons Modeling synaptic inputs From spiking to firing-rate based networks Feedforward Networks Multilayer Networks R. Rao, 528: Lecture 8 3 How do neurons connect to form networks? Using synapses! R. Rao, 528: Lecture 8 4 Image Source: Wikimedia Commons

  3. Synapses on an actual neuron R. Rao, 528: Lecture 8 5 Image Credit: Kennedy lab, Caltech. http://www.its.caltech.edu/~mbkla What do synapses do? Spike Increase or decrease postsynaptic membrane potential R. Rao, 528: Lecture 8 6 Image Source: Wikimedia Commons

  4. An Excitatory Synapse Input spike  Spike Neurotransmitter release (e.g., Glutamate)  Binds to ion channel receptors  Ion channels open  Na+ influx  Depolarization due to EPSP (excitatory postsynaptic potential) R. Rao, 528: Lecture 8 7 Image Source: Wikimedia Commons An Inhibitory Synapse Input spike  Spike Neurotransmitter release (e.g., GABA)  Binds to ion channel receptors  Ion channels open  Cl- influx  Hyperpolarization due to IPSP (inhibitory postsynaptic potential) R. Rao, 528: Lecture 8 8 Image Source: Wikimedia Commons

  5. We want a computational model of the effects of a synapse on the membrane potential V Synapse V How do we do this? R. Rao, 528: Lecture 8 9 Flashback Membrane Model V  dV ( V E ) I    L e c , or equivalently:  m = r m c m = R m C m m dt r A m is the membrane dV      time constant ( V E ) I R m L e m dt R. Rao, 528: Lecture 8 10 Image Source: Dayan & Abbott textbook

  6. How do we model the effects of a synapse on the membrane potential V ? ? Synapse R. Rao, 528: Lecture 8 11 Hint! Hodgkin-Huxley Model K Na dV     i r I R m m m e m dt       4 3 i ( 1 / r )( V E ) g n ( V E ) g m h ( V E ) m m L K , max K Na , max Na E L = -54 mV, E K = -77 mV, E Na = +50 mV R. Rao, 528: Lecture 8 12 Image Source: Dayan & Abbott textbook

  7. Modeling Synaptic Inputs Synaptic V conductance Synapse dV          ( ) ( ) V E r g V E I R m L m s s e m dt  g g P P Probability of postsynaptic channel opening s s , max rel s (= fraction of channels opened) Probability of transmitter release given an input spike R. Rao, 528: Lecture 8 13 Basic Synapse Model F Assume P rel = 1 fraction of F Model the effect of a single spike input on P s channels opened F Kinetic Model of postsynaptic channels:    s Open Closed    s dP      s ( 1 P ) P s s s s dt Opening rate Closing rate Fraction of channels open Fraction of channels closed R. Rao, 528: Lecture 8 14

  8. What does P s look like over time given a spike? t    K ( t ) e s Exponential function K ( t ) gives reasonable fit for some synapses Others can be fit using “Alpha” function: t  P max    K ( t ) t e peak t R. Rao, 528: Lecture 8 15 0  peak Linear Filter Model of a Synapse Synapse Input Spike b Train  b (t)  b ( t ) =  i δ ( t-t i ) ( t i are the input spike times , δ = delta function) Filter for K ( t ) synapse b = Synaptic conductance at b :    g ( t ) g K ( t t ) b b , max i  t t i t        g K ( t ) ( ) d b , max b   R. Rao, 528: Lecture 8 16

  9. Example: Network of Integrate-and-Fire Neurons Excitatory synapses ( E b = 0 mV) Inhibitory synapses ( E b = -80 mV) Synchrony! dV        ( ) ( )( ) V E r g t V E I R Each neuron: m L m b b e m dt     E 70 mV V 54 mV Synapses : Alpha function model L thresh   1 0 ms R. Rao, 528: Lecture 8 17 peak Modeling Networks of Neurons F Option 1: Use spiking neurons Advantages : Model computation and learning based on: Spike Timing Spike Correlations/Synchrony between neurons Disadvantages : Computationally expensive F Option 2: Use neurons with firing-rate outputs (real valued outputs) Advantages : Greater efficiency, scales well to large networks Disadvantages : Ignores spike timing issues F Question: How are these two approaches related? R. Rao, 528: Lecture 8 18

  10. Recall: Linear Filter Model of a Synapse Synapse b Input Spike Train  b (t)  b ( t ) =  i δ ( t-t i ) ( t i are the input spike times , δ = delta function) Filter for K ( t ) synapse b = Synaptic conductance at b :    g ( t ) g K ( t t ) b b , max i  t t i t        g K ( t ) ( ) d b , max b   R. Rao, 528: Lecture 8 19 From a Single Synapse to Multiple Synapses w 1 Synaptic weights w N Spike trains  1 (t)  N (t) N   ( ) ( ) I t I t Total synaptic current s b  b 1 t N         I ( t ) w K ( t ) ( ) d s b b    b 1 R. Rao, 528: Lecture 8 20

  11. From Spiking to Firing Rate Model w 1 Synaptic weights w N Spike trains  1 (t)  N (t) u N (t) Firing rate u 1 (t) t N   Total       Spike train  b (t) I ( t ) w K ( t ) ( ) d s b b synaptic  b 1   current t N        Firing rate u b (t) w K ( t ) u ( ) d b b  1   b R. Rao, 528: Lecture 8 21 Simplifying the Input Current Equation w 1 Synaptic weights w N Weight vector w u N (t) Firing rate u 1 (t) Input vector u t   1  K ( t ) e Suppose synaptic filter K is exponential: s  s t        Differentiating w.r.t. time t , I ( t ) w K ( t ) u ( ) d s b b b   dI      s I w u we get s s b b dt b    w  I u s R. Rao, 528: Lecture 8 22

  12. General Firing-Rate-Based Network Model F is the “activation function” Output firing rate dv     v F ( I ( t )) changes like this: r s dt What happens when: Input current dI        w  ? changes like this: s I u s r s s dt    ? r s Static input? R. Rao, 528: Lecture 8 23 Next Class: Networks F To Do: Homework 3 Finalize a final project topic and partner(s) Email Raj, Adrienne and Rich your topic and partners, or ask to be assigned to a team R. Rao, 528: Lecture 8 24

Recommend


More recommend