cosmology with the cosmic microwave background
play

Cosmology with the Cosmic Microwave Background Jan Tauber Planck - PowerPoint PPT Presentation

Cosmology with the Cosmic Microwave Background Jan Tauber Planck Project Scientist European Space Agency Contents 1. The Cosmic Microwave Background 2. Current state of CMB cosmology 3. Future directions Most of this talk is based on the


  1. Cosmology with the Cosmic Microwave Background Jan Tauber Planck Project Scientist European Space Agency

  2. Contents 1. The Cosmic Microwave Background 2. Current state of CMB cosmology 3. Future directions Most of this talk is based on the Planck Legacy paper (Planck Coll I 2018) downloadable from http://www.cosmos.esa.int/web/planck/publications Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  3. Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  4. Physics at the time of recombination Photon At the largest diffusion 300 µ K angular scales, -300 the spectrum damps of primordial the signal fluctuations is amplitudes preserved at small Reionisation increases angular the optical depth scales Acoustic oscillations in the last scattering layer Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  5. Large angles Small angles Large angles ~10 o ~1 o ~0.1 o Early Universe physics Acoustic physics The angular power spectrum of the temperature and polarisation anisotropies can be used to extract the value of fundamental cosmological parameters Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  6. The shape of the power spectrum depends sensitively on the value of cosmological parameters Hu 2002 Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  7. Theoretical angular power spectrum of the polarised CMB Temperature spectrum E-mode spectrum B-mode spectrum D T å = m m q j a l Y ( , ) 2 l = á m ñ C a T l l l , m Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  8. Penzias & Wilson COBE WMAP 2009 Planck -160 160 µ K 0.41 µ K -300 300 µ K Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  9. 2018 Planck maps 30 GHz 44 GHz 70 GHz 100 GHz 143 GHz 217 GHz 353 GHz 545 GHz 857 GHz Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  10. The temperature fluctuations of the CMB 300 µ K -300 Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  11. Q U P 2018 30 GHz polarized maps 44 GHz 3 0.1 3 1000 1 EE 30 3 3 0 0.3 3 10 0 1 70 GHz Multipole moment, ` 0 10 3 100 100 100 GHz 10 3 2 30 100 300 143 GHz Frequency [GHz] 30 44 70 100 143 217 353 Rms polarization amplitude [ µ K] 2 10 Synchrotron 217 GHz Sum foregrounds 1 10 f sky = 0.83 Thermal dust f sky = 0.52 f sky = 0.27 0 10 CMB 353 GHz -1 10 10 30 100 300 1000 Frequency [GHz] Jan Tauber, Astroparticle physics, La Palma, Oct 2018 10 2 10 3 3 10 3 1 10 30-353 GHz; δ T [ µ K cmb ]

  12. The polarized CMB 160 µ K -160 0.41 µ K Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  13. Lensing of the CMB 2 2 Planck 2018 (MV) SPT-SZ 2017 (T, 2500 deg 2 ) Planck 2015 (MV) ACTPol 2017 (MV, 626 deg 2 ) SPTpol 2015 (MV, 100 deg 2 ) 1 . 5 1 . 5 L / 2 π L / 2 π 10 7 L 2 ( L + 1) 2 C φφ 10 7 L 2 ( L + 1) 2 C φφ 1 1 0 . 5 0 . 5 0 0 10 10 100 100 500 500 1000 1000 2000 2000 L L Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  14. The L CDM base model 1. General assumptions: GR, homogeneity, isotropy, … 2. Close-to-zero curvature and simple topology 3. Contents of the Universe a. photons b. Baryons c. Dark matter d. Dark energy that behaves like a cosmological constant e. Sub-dominant levels of relativistic particles (low-mass neutrinos) 4. Initial density variations are gaussian, adiabatic, nearly-scale- invariant (inflation) Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  15. Best L CDM fit to TT, TE, EE+lowE+lensing Parameter Planck alone Planck + BAO Ω b h 2 . . . . . . . . . . 0 . 02237 ± 0 . 00015 0 . 02242 ± 0 . 00014 Ω c h 2 . . . . . . . . . . 0 . 1200 ± 0 . 0012 0 . 11933 ± 0 . 00091 100 ✓ MC . . . . . . . . 1 . 04092 ± 0 . 00031 1 . 04101 ± 0 . 00029 ⌧ . . . . . . . . . . . . . 0 . 0544 ± 0 . 0073 0 . 0561 ± 0 . 0071 ln(10 10 A s ) . . . . . . 3 . 044 ± 0 . 014 3 . 047 ± 0 . 014 n s . . . . . . . . . . . . 0 . 9649 ± 0 . 0042 0 . 9665 ± 0 . 0038 H 0 . . . . . . . . . . . 67 . 36 ± 0 . 54 67 . 66 ± 0 . 42 Ω Λ . . . . . . . . . . . 0 . 6847 ± 0 . 0073 0 . 6889 ± 0 . 0056 Ω m . . . . . . . . . . . 0 . 3153 ± 0 . 0073 0 . 3111 ± 0 . 0056 Ω m h 2 . . . . . . . . . . 0 . 1430 ± 0 . 0011 0 . 14240 ± 0 . 00087 Ω m h 3 . . . . . . . . . . 0 . 09633 ± 0 . 00030 0 . 09635 ± 0 . 00030 � 8 . . . . . . . . . . . . 0 . 8111 ± 0 . 0060 0 . 8102 ± 0 . 0060 � 8 ( Ω m / 0 . 3) 0 . 5 . . . 0 . 832 ± 0 . 013 0 . 825 ± 0 . 011 z re . . . . . . . . . . . . 7 . 67 ± 0 . 73 7 . 82 ± 0 . 71 Age[Gyr] . . . . . . 13 . 797 ± 0 . 023 13 . 787 ± 0 . 020 r ⇤ [Mpc] . . . . . . . . 144 . 43 ± 0 . 26 144 . 57 ± 0 . 22 100 ✓ ⇤ . . . . . . . . . 1 . 04110 ± 0 . 00031 1 . 04119 ± 0 . 00029 r drag [Mpc] . . . . . . 147 . 09 ± 0 . 26 147 . 57 ± 0 . 22 z eq . . . . . . . . . . . . 3402 ± 26 3387 ± 21 k eq [Mpc � 1 ] . . . . . . 0 . 010384 ± 0 . 000081 0 . 010339 ± 0 . 000063 Ω K . . . . . . . . . . . � 0 . 0096 ± 0 . 0061 0 . 0007 ± 0 . 0019 Σ m ⌫ [eV] . . . . . . . < 0 . 241 < 0 . 120 2 . 89 + 0 . 36 2 . 99 + 0 . 34 N e ff . . . . . . . . . . . � 0 . 38 � 0 . 33 r 0 . 002 . . . . . . . . . . < 0 . 101 < 0 . 106 Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  16. Precision concordance cosmology Age of the Universe: 13.8 Gyr Hubble constant: 67.4 km s -1 /Mpc Reionization redshift: z re ~ 7.7 26.6% 4.9% 68.5% Percent accuracies except for t • Consistency between temperature and polarization • Consistency with other tracers of cosmology • Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  17. Extensions to L CDM Extensions to L CDM allow to Test assumptions • Constrain theoretical parameters, e.g. set upper limits • ± ± Ω K . . . . . . . . . . . − 0 . 0096 ± 0 . 0061 0 . 0007 ± 0 . 0019 Departures from flatness • Σ m ⌫ [eV] . . . . . . . < 0 . 241 < 0 . 120 Neutrino masses • 2 . 89 + 0 . 36 2 . 99 + 0 . 34 N e ff . . . . . . . . . . . − 0 . 38 − 0 . 33 Number of relativistic species r 0 . 002 . . . . . . . . . . < 0 . 101 < 0 . 106 • f NL = 2.5 ± 5.7 spatial non-gaussianity • tensor modes (primordial gravitational waves) • Deviations from scalar invariance • Dark energy equation of state • Deviations from isotropy • Strange topologies • Non-adiabaticity • … • Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  18. Inflationary scorecard Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  19. Inflationary models Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  20. The linear matter power spectrum (z~0) from different probes spanning 14Gyr in time and >3 decades in scale Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  21. Concordance cosmology BBN BAO He D RSD Lensing Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  22. The Hubble constant Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  23. CMB measurements state of the art Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  24. Cosmological parameters over time Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  25. What next ? “Moore’s Law” of CMB sensitivity Approximate raw experimental noise (µK) Space based experiments − 1 Stage − I − ≈ 100 detectors 10 Approximate raw experimental sensitivity ( µ K) Stage − II − ≈ 1,000 detectors Stage − III − ≈ 10,000 detectors WMAP Stage − IV − ≈ 100,000 detectors − 2 10 Planck − 3 10 C M B − S 4 − 4 from 2013 Snowmass documents 10 2000 2005 2010 2015 2020 Year But need more than detectors… Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  26. What next ? CMB anisotropies + lensing • Primordial grav waves • Neutrino parameters • Cluster science • … • CMB spectrum • Distortion signals • Recombination- and • reionization-era lines … • Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  27. Potential future satellites Litebird Pixie Beyond*the*Pow Slide CORE Jan Tauber, Astroparticle physics, La Palma, Oct 2018

  28. Sub-orbital 2.5m POLARBEAR 
 6m Atacama Cosmology T 10m South Pole T elescope 
 elescope 
 Huan Tran T elescope 
 physics.princeton.edu/act/ pole.uchicago.edu 
 bolo.berkeley.edu/polarbear • • • • • • BICEP3 and KECK 
 at South pole 
 bicepkeck.org 
 • • • – – CLASS telescope #1 
 – – http://sites.krieger.jhu.edu/class/ 
 Jan Tauber, Astroparticle physics, La Palma, Oct 2018 NASA/JPL detector 
 modules 


  29. Ground-based forecasts Sensitivity 
 Dark Energy 
 σ (r) σ (N eff ) σ ( Σ m ν ) F.O.M ( μ K 2 ) 2015 Stage 2 
 2016 Boss BAO 
 DES+BOSS 
 1000 
 prior SPT clusters detectors 2017 ≳ 10 -5 0.035 0.14 0.15eV 0.15eV ~180 2018 2019 2020 Stage 3 
 10,000 
 2021 detectors Boss BAO 
 DES + DESI 
 2022 prior SZ Clusters 2023 ~300-600 ~0.06eV 10 -6 0.003 0.06 2024 2025 2026 DESI BAO 
 DESI +LSST 
 + τ e prior S4 Clusters Jan Tauber, Astroparticle physics, La Palma, Oct 2018 2027/34 10 -8 0.015eV 0.0005 0.03 1250 CMB-S4

Recommend


More recommend