cosmological neutrino masses including steriles
play

Cosmological neutrino masses (including steriles) Viviana Niro ITP, - PowerPoint PPT Presentation

Cosmological neutrino masses (including steriles) Viviana Niro ITP, Heidelberg CERN, 30 March, 2017 Neutrinos: the quest for a new physics scale Munich n TR 33 n o B The Dark Universe Heidelberg V. Niro (ITP, Heidelberg) mass in


  1. Cosmological neutrino masses (including steriles) Viviana Niro ITP, Heidelberg CERN, 30 March, 2017 Neutrinos: the quest for a new physics scale Munich n TR 33 n o B The Dark Universe Heidelberg V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 1 / 17

  2. The standard model of cosmology ΛCDM: Standard Model of Cosmology Hubble parameter H 0 ω b ≡ Ω b h 2 Baryon density in the Universe ω cdm ≡ Ω cdm h 2 Cold Dark Matter density in the Universe Optical depth at reionization τ reio Amplitude of scalar power spectrum of primordial fluctua- A S tions at the pivot scale k ∗ = 0 . 05 Mpc − 1 Scalar spectral index of primordial density fluctuations n s � m ν ≡ M ν Sum of of the three active neutrino masses τ reio : CMB photons scattering off electrons, after reionization produced by stars, quasars Planck data in remarkable agreement with ΛCDM model V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 2 / 17

  3. Neutrino mass in cosmology Cosmology provides important information on the sum of neutrino masses M ν → affects the expansion rate of the Universe and the way large-scale structures form and evolve Cosmic Microwave Background (CMB) anisotropies → Early Integrated Sachs Wolfe Effect ISW: change in the temperature of CMB photons due to changing of gravitational potential wells (expansion of the Universe) eISW: when neutrinos become non-relativistic, they influence the time variation of the gravitational potential Gravitational lensing measurements → increasing the neutrino mass suppresses the lensing potential (neutrino masses reduce the amplitude of matter fluctuations on small scales) J. Lesgourgues, L. Perotto, S. Pastor, M. Piat, arXiv:astro-ph/0511735 see talk by J. Lesgourgues and references therein V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 3 / 17

  4. Planck results on neutrino mass (LCDM) Planck TT+lowP (coloured points): M ν < 0 . 72 eV; Planck collaboration, arXiv:1502.01589 Planck TT+lowP+lensing (solid black contours): M ν < 0 . 68 eV; Planck TT+lowP+lensing+BAO (filled contours): M ν < 0 . 25 eV; 75 0.84 H 0 [km s − 1 Mpc − 1 ] 0.80 70 0.76 65 σ 8 0.72 60 0.68 0.64 55 0.60 0.0 0.4 0.8 1.2 1.6 Σ m ν [eV] M ν < 0.49 eV (TT+TE+EE+lowP) M ν < 0.17 eV (TT+TE+EE+lowP+BAO) M ν < 0.59 eV (TT+TE+EE+lowP+lensing) M ν < 0.22 eV (TT+TE+EE+lowP+BAO+lensing) V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 4 / 17

  5. Effect of τ reio prior and extended cosmology τ = 0 . 055 ± 0 . 009 (low-multipole EE data from HFI), Σ m ν < 0 . 14 eV (Planck TT,TE,EE+SimLow+Lensing+BAO) Planck collaboration, arXiv: 1605.02985 1.2 CMB CMB+ τ M ν 0.58 0 58 63 69 0.64 0.75 0.85 0.04 0.088 0.14 H 0 σ 8 τ reio A.Cuesta, Proceedings SEA 2016 Extensions of LCDM model: different parameters can be added to the analysis Example (Planck TT+lowP+lensing+BAO): N eff CDM: M ν < 0.32 eV 95% C.L., ω CDM: M ν < 0.37 eV at 95% C.L. Planck collaboration, arXiv:1502.01589 V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 5 / 17

  6. Galaxy surveys Massive neutrinos lead to a suppression on the matter power spectrum at small scales (neutrinos do not cluster gravitationally on small scales) ⇒ measurements of the full shape of the matter power spectrum are of great importance for neutrino physics: they are able to put tight constraints on the sum of neutrino masses W. Hu, D. J. Eisenstein, M. Tegmark, astro-ph/9712057; J. Lesgourgues, S. Pastor, astro-ph/0603494 1.10 M ν = 0 . 00 eV M ν = 0 . 15 eV 1.05 M ν = 0 . 30 eV P ( k ) /P ( k ) M ν = 0 1.00 0.95 0.90 0.85 0.80 0.02 0.05 0.10 0.20 k ( h Mpc − 1 ) V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 6 / 17

  7. Luminous red galaxies vs emission line galaxies Galaxy bias b 2 : depends on the type of galaxies; marginalised in the analysis CMB15+LRG CMB15+WZ +lensing +lensing CMB15+LRG+BAO CMB15+WZ+BAO +lensing +lensing 0 0.2 0.4 0.6 0.79 0 0.19 0.39 0.58 0.78 M ν [eV] M ν [eV] LRG galaxies WZ galaxies CMB15 + SDSS-DR7 LRG + BAO: 0.13 eV, CMB15 + WZ + BAO: 0.14 eV A.J. Cuesta, VN, L. Verde, arXiv:1511.05983 [astro-ph.CO] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 7 / 17

  8. Lyman- α data To date the strongest constraint on M ν is provided by the joint analysis of CMB15, BAO and Lyman- α forest data: Palanque-Delabrouille et al., arXiv:1506.05976 [astro-ph.CO] M ν < 0 . 12 eV (95% C . L . ) From CMB13 results: Palanque-Delabrouille et al., arXiv:1410.7244 [astro-ph.CO] M ν < 0 . 15 eV ( including BAO : 0 . 14 eV ) (95% C . L . ) Lyman- α : estimate the matter power spectra from absorption observed in quasar spectra Hydrodynamic simulations to relate neutral hydrogen in the inter-galactic medium with the underlying mass distribution Palanque-Delabrouille et al., arXiv:1506.05976 [astro-ph.CO] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 8 / 17

  9. BAO and τ reio measurements DR12 CMASS P ( k ) versus BAO datasets: CMB temperature anisotropies, BAO data, up-to-date constraint on τ reio : M ν < 0 . 151 eV 95% C . L . With the addition of Planck high- l polarization data: M ν < 0 . 118 eV 95% C . L . S. Vagnozzi, E. Giusarma, O. Mena, et al., arXiv:1701.08172 [astro-ph.CO] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 9 / 17

  10. Neutrino hierarchy the neutrino mass hierarchy, normal or inverted, as well as the sum of the three active neutrino masses, are quantities that are still unknown For a zero lightest neutrino mass ( m 0 = 0), the predictions for the sum M ν is: M ν = 58 . 5 ± 0 . 48 meV ( NO ); M ν = 98 . 6 ± 0 . 85 meV ( IO ) with (1 σ uncertainties) S. Hannestadad and T. Schwetz, arXiv:1606.04691 [astro-ph.CO] ∆ m 2 21 = 7 . 49 +0 . 19 − 0 . 17 × 10 − 5 eV 2 ; ∆ m 2 31 = 2 . 484 +0 . 045 − 0 . 048 × 10 − 3 eV 2 ( NO ); ∆ m 2 32 = − 2 . 467 +0 . 041 − 0 . 042 × 10 − 3 eV 2 ( IO ) M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, arXiv:1409.5439; see talk M. C. Gonzalez-Garcia and references therein V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 10 / 17

  11. Neutrino mass ordering and cosmological bounds Posterior odds of IO versus NO p I / p N S. Hannestadad and T. Schwetz, arXiv:1606.04691 [astro-ph.CO] � ∞ π ( O ) dm 0 L ( D | m 0 , O ) 0 p O = � ∞ � ∞ π ( N ) dm 0 L ( D | m 0 , N ) + π ( I ) dm 0 L ( D | m 0 , I ) 0 0 π ( I ) = 0.55; π ( N ) = 0 . 45 ⇒ posterior odds of 1.55:1 for NO vs IO. Posterior likelihood function from Planck+BAO+ H 0 See also discussion in F. Simpson, R. Jimenez, C. Pena-Garay, L. Verde, arXiv:1703.03425 [astro-ph.CO]; T. Schwetz, K. Freese, M. Gerbino et al, arXiv:1703.04585 [astro-ph.CO]; F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, arXiv:1703.04471 [hep-ph] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 11 / 17

  12. Future surveys expect a sensitivity σ ( M ν ) close to 0.02 eV (1-sigma) around the year 2025 for a survey like Euclid combined with Planck (planned launch date for Euclid 2020) B. Audren, J. Lesgourgues, S. Bird, M. G. Haehnelt and M. Viel, arXiv:1210.2194 CMB satellite of next generation like Core+ combined with Euclid could further improve the sensitivity Other surveys, like DESI, can reach similar sensitivity on M ν . DES can reach a sensitivity σ ( M ν ) close to 0.06 eV A. Font-Ribera, et al., arXiv:1308.4164 [astro-ph.CO] O. Lahav, et al., arXiv:0910.4714 [astro-ph.CO] Good prospects to detect the absolute neutrino mass scale with cosmology V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 12 / 17

  13. Prospects for Euclid S. Hannestadad and T. Schwetz, arXiv:1606.04691 [astro-ph.CO] Posterior likelihood function from simulated future data (EUCLID+Planck CMB), one massive neutrino with m ν = 0 . 06 eV and 2.046 massless neutrinos; gray shaded region: one-sided upper bound on M ν at 95% C.L. Right panel: posterior likelihood as a function of m 0 for NO and IO V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 13 / 17

  14. Degeneracy between H 0 and m ν Correlation between M ν , h , ω cdm with BAO, along different angles than with CMB data BAO-DESI experiment → ratio r s ( z drag ) / D V ( z BAO ) CMB → lensing and angular diameter distance ∆ ω cdm ≃ − 0 . 5∆ ω ν , ∆ h ≃ − 0 . 017(∆ M ν / 1 eV ) ≃ − 1 . 6∆ ω ν ∆ ω cdm ≃ ∆ ω ν , ∆ h ≃ − 0 . 13(∆ M ν / 1 eV ) ≃ − 12∆ ω ν M. Archidiacono, T. Brinckmann, J. Lesgourgues, V. Poulin, arXiv:1610.09852 [astro-ph.CO] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 14 / 17

  15. Sterile neutrinos m eff = (∆ N eff ) 3 / 4 m TH , m eff = (∆ N eff ) m DW Planck TT+lowP+lensing+BAO: s s m eff N eff < 3 . 7; ν ; sterile < 0 . 38 eV at 95 % C . L . Planck collaboration, arXiv:1502.01589 See talk by C. Giunti on neutrino anomalies and talk by N. Saviano on secret neutrino interactions, and references therein Already using Planck2013+SBL: ∆ N eff ≥ 0 . 86 strongly disfavoured, evidence against the 3+1 model compared to the model with only the 3 active neutrinos J. Bergstrom, M. C. Gonzalez-Garcia, VN, J. Salvado, arXiv:1407.3806 [hep-ph] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 15 / 17

  16. ν µ disappearance results and cosmology Exclusion regions at 95% CL from Planck, MINOS, IceCube, and the SBN forecast Dashed line: Planck constraint with m 4 calculated using the DW mechanism Dot-dash line: Planck constraint using a large lepton-asymmetry, L = 10 − 2 S. Bridle, J. Elvin-Poole, J. Evans, S. Fernandez, P. Guzowski, S. Soldner-Rembold, 1607.00032 [astro-ph.CO] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 16 / 17

Recommend


More recommend