correlation of quadratic boolean functions cryptanalysis
play

Correlation of Quadratic Boolean Functions: Cryptanalysis of All - PowerPoint PPT Presentation

Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Correlation of Quadratic Boolean Functions: Cryptanalysis of All Versions of Full MORUS Siwei Sun Joint work


  1. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Correlation of Quadratic Boolean Functions: Cryptanalysis of All Versions of Full MORUS Siwei Sun Joint work with: Danping Shi Yu Sasaki Chaoyun Li Lei Hu Chinese Academy of Sciences, China NTT Secure Platform Laboratories, Japan imec-COSIC, Dept. Electrical Engineering (ESAT), KU Leuven, Belgium December 14, 2019 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 1 / 38

  2. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Outlines Correlation and Linear Cryptanalysis 1 Correlation of Quadratic Boolean Functions 2 Cryptanalysis of MORUS 3 Conclusion and Discussion 4 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 2 / 38

  3. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Outline Correlation and Linear Cryptanalysis 1 Correlation of Quadratic Boolean Functions 2 Cryptanalysis of MORUS 3 Conclusion and Discussion 4 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 3 / 38

  4. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Correlation Let f : F n 2 → F 2 be a Boolean function with ANF � f ( ① ) = a ✉ ① ✉ , ✉ ∈ F n 2 where ① = ( x 1 , · · · , x n ) , ✉ = ( u 1 , · · · , u n ) , a ✉ ∈ F 2 , and ① ✉ = � n i =1 x u i i . Definition (Correlation) The correlation of an n -variable Boolean function f is cor ( f ) = 1 2 ( − 1) f ( ① ) , and the weight of the correlation is � ① ∈ F n 2 n defined as − log 2 | cor ( f ) | . Pr ( f = 0) = 1 2 + 1 2 cor ( f ) Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 3 / 38

  5. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Linear Cryptanalysis S U S 0 S 1 S k − 1 S k Init F F · · · F F α 0 α 1 α k − 2 α k − 1 α k β − 1 β 0 β 1 β k − 2 β k − 1 γ 0 γ 1 γ k − 1 γ k G G · · · G G λ k − 1 λ 0 λ 1 λ k Z 0 Z 1 Z k − 1 Z k �� k i =0 λ i Z i � Object: max | cor | i =0 λ i Z i is a Boolean function whose variables are bits Note that � k of S 0 . Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 4 / 38

  6. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Definition (Correlation) The correlation of an n -variable Boolean function f is cor ( f ) = 1 2 ( − 1) f ( ① ) , and the weight of the correlation is � ① ∈ F n 2 n defined as − log 2 | cor ( f ) | . Brute force the input Graph-based method [TIM + 18] ... ... Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 5 / 38

  7. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Outline Correlation and Linear Cryptanalysis 1 Correlation of Quadratic Boolean Functions 2 Cryptanalysis of MORUS 3 Conclusion and Discussion 4 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 6 / 38

  8. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Definition (Disjoint Quadratic Boolean Function) A quadratic Boolean function f ( x 1 , · · · , x n ) is disjoint if no variable x i appears in more than one quadratic term. Example x 1 x 2 + x 3 x 4 x 1 x 3 + x 2 x 4 + x 2 + x 5 Counter-Example x 1 x 2 + x 2 x 3 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 6 / 38

  9. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion lemma Let f = x i 1 x i 2 + · · · + x i 2 k − 1 x i 2 k + x j 1 + · · · + x j s be a disjoint quadratic Boolean function. Then the correlation of f is � k t =1 Coe f ( x i 2 t − 1 ) Coe f ( x i 2 t ) · 2 − k  ( − 1) { j 1 , · · · , j s } ⊆ { i 1 , · · · , i 2 k }   0 { j 1 , · · · , j s } � { i 1 , · · · , i 2 k }   where Coe f ( ① ✉ ) denotes the coefficient of the monomial ① ✉ in the ANF of f . Examples | cor ( x 1 x 2 + x 3 x 4 ) | = 2 − 2 | cor ( x 1 x 3 + x 2 x 4 + x 2 + x 5 ) | = 0 | cor ( x 1 x 3 + x 2 x 4 + x 2 + x 3 ) | = 2 − 2 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 7 / 38

  10. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Idea Given a quadratic Boolean function, transform it into a disjoint quadratic Boolean function such that the transformation is correlation invariant (up to a minus sign). Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 8 / 38

  11. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Example f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 9 / 38

  12. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Example f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 9 / 38

  13. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Example f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 2 ( x 1 + x 3 + x 4 ) + x 1 x 5 + x 1 + x 2 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 9 / 38

  14. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Example f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 2 ( x 1 + x 3 + x 4 ) + x 1 x 5 + x 1 + x 2 x 1 ← x 1 + x 3 + x 4 x j ← x j , j � = 1 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 9 / 38

  15. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Example f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 2 ( x 1 + x 3 + x 4 ) + x 1 x 5 + x 1 + x 2 x 1 ← x 1 + x 3 + x 4 x j ← x j , j � = 1 f = x 1 x 2 + x 1 x 5 + x 3 x 5 + x 4 x 5 + x 1 + x 3 + x 4 + x 2 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 9 / 38

  16. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Example f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 2 ( x 1 + x 3 + x 4 ) + x 1 x 5 + x 1 + x 2 x 1 ← x 1 + x 3 + x 4 x j ← x j , j � = 1 f = x 1 x 2 + x 1 x 5 + x 3 x 5 + x 4 x 5 + x 1 + x 3 + x 4 + x 2 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 9 / 38

  17. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Example f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 2 ( x 1 + x 3 + x 4 ) + x 1 x 5 + x 1 + x 2 x 1 ← x 1 + x 3 + x 4 x j ← x j , j � = 1 f = x 1 x 2 + x 1 x 5 + x 3 x 5 + x 4 x 5 + x 1 + x 3 + x 4 + x 2 f = x 1 ( x 2 + x 5 ) + x 3 x 5 + x 4 x 5 + x 1 + x 3 + x 4 + x 2 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 9 / 38

  18. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Example f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 2 ( x 1 + x 3 + x 4 ) + x 1 x 5 + x 1 + x 2 x 1 ← x 1 + x 3 + x 4 x j ← x j , j � = 1 f = x 1 x 2 + x 1 x 5 + x 3 x 5 + x 4 x 5 + x 1 + x 3 + x 4 + x 2 f = x 1 ( x 2 + x 5 ) + x 3 x 5 + x 4 x 5 + x 1 + x 3 + x 4 + x 2 x 2 ← x 2 + x 5 x j ← x j , j � = 2 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 9 / 38

  19. Correlation and Linear Cryptanalysis Correlation of Quadratic Boolean Functions Cryptanalysis of MORUS Conclusion and Discussion Example f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 1 x 2 + x 1 x 5 + x 2 x 3 + x 2 x 4 + x 1 + x 2 f = x 2 ( x 1 + x 3 + x 4 ) + x 1 x 5 + x 1 + x 2 x 1 ← x 1 + x 3 + x 4 x j ← x j , j � = 1 f = x 1 x 2 + x 1 x 5 + x 3 x 5 + x 4 x 5 + x 1 + x 3 + x 4 + x 2 f = x 1 ( x 2 + x 5 ) + x 3 x 5 + x 4 x 5 + x 1 + x 3 + x 4 + x 2 x 2 ← x 2 + x 5 x j ← x j , j � = 2 f = x 1 x 2 + x 3 x 5 + x 4 x 5 + x 1 + x 2 + x 3 + x 4 + x 5 Siwei Sun et. al. Cryptanalysis of All Versions of Full MORUS 9 / 38

Recommend


More recommend