convergence of filtered spherical harmonic equations for
play

Convergence of Filtered Spherical Harmonic Equations for Radiation - PowerPoint PPT Presentation

Convergence of Filtered Spherical Harmonic Equations for Radiation Transport Martin Frank (RWTH) Cory Hauck (ORNL) Kerstin K upper (RWTH) MMKTII, Fields Institute, October 2014 Convergence of Filtered Spherical Harmonic Equations for


  1. Convergence of Filtered Spherical Harmonic Equations for Radiation Transport Martin Frank (RWTH) Cory Hauck (ORNL) Kerstin K¨ upper (RWTH) MMKTII, Fields Institute, October 2014 Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 1/34

  2. Outline & References • Filtered P N equations 1 • Convergence analysis • Modified equation 2 • Galerkin estimate 3 • Convergence estimates • Numerical experiments using StaRMAP 4 1 McClarren, Hauck, JCP 2010 2 Radice et al., JCP 2013 3 Schmeiser, Zwirchmayr, SINUM 1999 4 Seibold, Frank, TOMS 2014 Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 2/34

  3. Checkerboard: P 5 versus FP 5 Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 3/34

  4. Line Source: P 9 versus FP 9 Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 4/34

  5. Challenges Challenges in radiation transport: • Highly heterogeneous media • Media/initial conditions/sources lead to non-smooth solutions • Preserve realizability, rotational invariance • Capture beams Challenges for spectral methods: • Spectral methods achieve fast convergence for smooth solutions • But suffer from the Gibbs phenomenon • Idea of filtering: dampen the coefficients in the expansion • Con: Some adjustments of the filter strength may be required for different problems • Pro: Speed, overall accuracy, and simplicity Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 5/34

  6. FILTERED P N Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 6/34

  7. Radiation Transport ∂ t ψ ( t , x , Ω)+Ω ·∇ x ψ ( t , x , Ω)+ σ a ( x ) ψ ( t , x , Ω) − ( Q ψ )( t , x , Ω) = S ( t , x , Ω) • ψ ( t , x , Ω): density of particles, with respect to the measure d Ω dx , which at time t ∈ R are located at position x ∈ R 3 and move in the direction Ω ∈ S 2 . • Scattering operator �� � S 2 g ( x , Ω · Ω ′ ) ψ ( t , x , Ω ′ ) d Ω ′ − ψ ( t , x , Ω) ( Q ψ )( t , x , Ω) = σ s ( x ) T ψ = S Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 7/34

  8. Sphercial Harmononic P N equations Notation: • Real-valued spherical harmonic m k ℓ , ℓ = 0 , 1 , . . . , k = − ℓ, . . . , ℓ � • Angular integration �·� = S 2 ( · ) d Ω Spectral Galerkin method: • Expand unknown ψ ≈ ψ PN ≡ m T u PN • Plug into equation and project residual � m T ( m T u PN ) � = � m S � =: s . • Other combinations of ansatz and projection can be used! P N equations ∂ t u PN + A · ∇ x u PN + σ a u PN − σ s Gu PN = s , where A := � mm T Ω � and G is diagonal Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 8/34

  9. Filtering • Filtering well-known in spectral methods • A filter of order α is a function f ∈ C α ( R + ), which fulfills f (0) = 1 , f ( k ) (0) = 0 , for k = 1 , . . . , α − 1 , and f ( α ) (0) � = 0 • Additional condition f ( η ) ≥ C (1 − η ) k , η ∈ [ η 0 , 1] • Filtering the expansion after every time step ℓ N � � �� β ∆ t � � ℓ u k ℓ m k f ℓ . N +1 ℓ =0 k = − ℓ Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 9/34

  10. NUMERICAL ANALYSIS Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 10/34

  11. Main Result Galerkin estimate � ψ ( t , · , · ) − ψ FPN ( t , · , · ) � L 2 ( R 3 ; L 2 ( S 2 )) ≤ � ψ ( t , · , · ) − P N ψ ( t , · , · ) � L 2 ( R 3 ; L 2 ( S 2 )) � + t � a N +1 · ∇ x � m N +1 ψ �� C ([0 , T ]; L 2 ( R 3 ; R n )) � + β � G f � m ψ �� C ([0 , T ]; L 2 ( R 3 ; R n )) Rates � ψ ( t , · , · ) − P ψ ( t , · , · ) � L 2 ( R 3 ; L 2 ( S 2 )) ≤ CN − q � ψ � C ([0 , T ]; L 2 ( R 3 ; H q ( S 2 ))) � a N +1 · ∇ x � m N +1 ψ �� C ([0 , T ]; L 2 ( R 3 ; R n )) ≤ CN − r �∇ x ψ � C ([0 , T ]; L 2 ( R 3 ; H r ( S 2 ))) � α > q − 1 CN − q +1 / 2 , 2 � G f � m ψ �� C ([0 , T ]; L 2 ( R 3 ; R n )) ≤ α ≤ q − 1 CN − α + ε , 2 Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 11/34

  12. Sobolev Spaces • H q ( S 2 ) Sobolev space on the unit sphere with norm   1 / 2 �  � S 2 | D α Φ(Ω) | 2 d Ω � Φ � H q ( S 2 ) :=  | α |≤ q • Spherical harmonics are eigenfunctions of Laplace-Beltrami operator L m k ℓ = − λ ℓ m k ℓ , λ ℓ = ℓ ( ℓ + 1) • Expansion coefficients Φ k ℓ := � m k ℓ Φ � of any function Φ ∈ H 2 q ( S 2 ) satisfy 1 1 Φ k ℓ = � m k ( − λ ℓ ) q � ( L q m k ( − λ ℓ ) q � m k ℓ L q Φ � ℓ Φ � = ℓ )Φ � = Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 12/34

  13. Spectral Convergence • L 2 -orthogonal projection of a generic function Φ ∈ L 2 ( S 2 ) onto P N P N Φ = m T � mm T � − 1 � m Φ � = m T � m Φ � • Projection onto polynomials of exact degree ℓ ( P ℓ − P ℓ − 1 )Φ = m T ℓ � m ℓ m T ℓ � − 1 � m ℓ Φ � = m T ℓ � m ℓ Φ � • Spectral convergence �� m ℓ Φ �� 2 R n ℓ = � ( P ℓ − P ℓ − 1 )Φ � 2 L 2 ( S 2 ) ≤ � ( I − P ℓ )Φ � 2 L 2 ( S 2 ) ∞ ∞ 1 � � | φ ℓ | 2 = ( − λ ℓ ) 2 q |� m ℓ L q Φ �| 2 = k = ℓ +1 k = ℓ +1 1 ( ℓ ( ℓ + 1)) 2 q � φ � 2 ≤ H 2 q ( S 2 ) Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 13/34

  14. Step 1: Modified Equation • Time step u n +1 , ∗ FPN = u n FPN − ∆ t ( A · ∇ x u n FPN + σ a u n FPN − σ s Gu n FPN − s n ) • Filtering FPN + ∆ t exp( β log( f )∆ t ) − 1 FPN = f β ∆ t u n +1 , ∗ FPN = u n +1 , ∗ u n +1 , ∗ u n +1 FPN ∆ t • Operator split discretization of Modified equation ∂ t u FPN + A · ∇ x u FPN + σ a u FPN − σ s Gu FPN − β G f u FPN = s , � �� � ℓ where G f is diagonal with entries log , ℓ = 0 , . . . , N . f N +1 Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 14/34

  15. Step 2: Galerkin Estimate • Residual ψ − ψ FPN = ( ψ − P N ψ ) + P N ψ − ψ FPN = ( ψ − P N ψ ) + m T r • Multiply by m T r and integrate in angle and space � � 1 R 3 | r | 2 dx = − R 3 r T 2 ∂ t N a N +1 · ∇ x � m N +1 ψ � dx � � R 3 r T G f � m ψ � dx − R 3 r T Mr dx . − σ f • M := σ a I − σ s G − σ f G f is positive definite • This yields ∂ t � r � L 2 ( R 3 ; R n ) ≤� a N +1 · ∇ x � m N +1 ψ �� L 2 ( R 3 ; R 2 N +1 ) + σ f � G f � m ψ �� L 2 ( R 3 ; R n ) • Control error by projection error + residual r Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 15/34

  16. Step 3: Convergence Estimate • Estimate filter term � G f � m ψ ( t , · , · ) �� 2 L 2 ( R 3 ; R n ) N log 2 � �� � � ℓ �� m ℓ ψ ( t , · , · ) �� 2 = f L 2 ( R 3 ; R n ℓ ) N +1 ℓ =0 N log 2 � �� � � � ( P ℓ − P ℓ − 1 ) ψ ( t , · , · ) � 2 ℓ = f L 2 ( R 3 ; L 2 ( S 2 )) N +1 ℓ =1 N log 2 � �� � � ℓ � ( I − P ℓ − 1 ) ψ ( t , · , · ) � 2 = C f L 2 ( R 3 ; L 2 ( S 2 )) N +1 ℓ =1 �� 1 N log 2 � � � ℓ ℓ 2 q � ψ ( t , · , · ) � 2 ≤ C f L 2 ( R 3 ; H q ( S 2 )) N +1 ℓ =1 Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 16/34

  17. Step 3: Convergence Estimate • For θ ≤ 2 q �� 1 N log 2 � � � ℓ f N +1 ℓ 2 q ℓ =1 N 1 1 log 2 � � �� � N +1 � � θ ℓ ≤ f ( N + 1) θ − 1 N +1 ℓ N + 1 ℓ =1 � �� � =:Σ • Interpret as Riemann sum � 1 log 2 ( f ( η )) η − θ d η Σ ∼ 0 • Around η = 0, log f ( η ) ≤ C η α • Σ Integrable for θ < 2 α + 1 Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 17/34

  18. Step 3: Convergence Estimate Two cases: Case 1: α > q − 1 2 . Choose θ = 2 q , convergence limited by the regularity of ψ � G f � m ψ �� C ([0 , T ]; L 2 ( R 3 ; R n )) ≤ CN − q +1 / 2 Case 2: α ≤ q − 1 2 . Choose θ = 2 α + 1 − δ , where δ > 0 is arbitrary, convergence limited by the filter order � G f � m ψ �� C ([0 , T ]; L 2 ( R 3 ; R n )) ≤ CN − α + ε , where ε = δ/ 2 Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 18/34

  19. Main Result Galerkin estimate � ψ ( t , · , · ) − ψ FPN ( t , · , · ) � L 2 ( R 3 ; L 2 ( S 2 )) ≤ � ψ ( t , · , · ) − P ψ ( t , · , · ) � L 2 ( R 3 ; L 2 ( S 2 )) � + t � a N +1 · ∇ x � m N +1 ψ �� C ([0 , T ]; L 2 ( R 3 ; R n )) � + β � G f � m ψ �� C ([0 , T ]; L 2 ( R 3 ; R n )) , Rates � ψ ( t , · , · ) − P ψ ( t , · , · ) � L 2 ( R 3 ; L 2 ( S 2 )) ≤ CN − q � ψ � C ([0 , T ]; L 2 ( R 3 ; H q ( S 2 ))) � a N +1 · ∇ x � m N +1 ψ �� C ([0 , T ]; L 2 ( R 3 ; R n )) ≤ CN − r �∇ x ψ � C ([0 , T ]; L 2 ( R 3 ; H r ( S 2 ))) � α > q − 1 CN − q +1 / 2 , 2 � G f � m ψ �� C ([0 , T ]; L 2 ( R 3 ; R n )) ≤ α ≤ q − 1 CN − α + ε , 2 Convergence of Filtered Spherical Harmonic Equations for Radiation Transport 19/34

Recommend


More recommend