Constructing ๐ -uniform states of non-minimal support Zahra Raissi, Adam Teixidรณ, Christian Gogolin, and Antonio Acรญn ICFO - The Institute of Photonic Sciences Quantum Information and String Theory (Japan), June 2019
๐ -uniform states and Absolutely Maximally Entangled (AME) states There is a fundamental question to ask, which states are useful for quantum information applications? 1 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
What are AME states? 1 2 3 4 ๐ = 2 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
What are AME states? 1 2 3 4 ๐ = Tr *1,2+ ๐ ๐ ๐ โ ๐ 2 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
What are AME states? 1 2 3 4 ๐ = Tr *1,3+ ๐ ๐ ๐ โ ๐ 2 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
What are AME states? 1 2 3 4 ๐ = Tr *1,4+ ๐ ๐ ๐ โ ๐ 2 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
What are AME states? 1 2 3 4 ๐ = Tr *3,4+ ๐ ๐ ๐ โ ๐ ๐ต๐๐น(๐, ๐) : A pure state of ๐ parties with local dimension ๐ is AME if for all ๐ โ 1, โฆ , ๐ ๐ โค ๐ 2 โน ๐ ๐ = Tr ๐ ๐ ๐ ๐ โ ๐ 2 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Existence of AME states ๏ง Still fundamental questions open. [1] A. Higuchi, A. and Sudbery, Phys. Lett. A 273,213 (2000). [2] A. J. Scott, Phys. Rev. A, 69, 052330 (2004). [3] F. Huber, O. Gรผhne, and J. Siewert, Phys. Rev. Lett. 118, 200502 (2017). 3 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Existence of AME states ๏ง Still fundamental questions open. For qubits, ( ๐ = 2 ): ๐ = 2, 3 โข ๐ต ๐ถ ๐ + = 00 + 11 ๐ ๐ = ๐ โ๐ ๐ท ๐ ๐ = ๐ ๐ป๐ผ๐ = 000 + 111 โ๐ ๐ต ๐ถ [1] A. Higuchi, A. and Sudbery, Phys. Lett. A 273,213 (2000). [2] A. J. Scott, Phys. Rev. A, 69, 052330 (2004). [3] F. Huber, O. Gรผhne, and J. Siewert, Phys. Rev. Lett. 118, 200502 (2017). 3 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Existence of AME states ๏ง Still fundamental questions open. For qubits, ( ๐ = 2 ): ๐ = 2, 3, 4, 5, 6, 7, 8, 9, โฆ โข [1,2,3] ๐ต ๐ถ ๐ + = 00 + 11 ๐ ๐ = ๐ โ๐ ๐ท ๐ ๐ = ๐ ๐ป๐ผ๐ = 000 + 111 โ๐ ๐ต ๐ถ [1] A. Higuchi, A. and Sudbery, Phys. Lett. A 273,213 (2000). [2] A. J. Scott, Phys. Rev. A, 69, 052330 (2004). [3] F. Huber, O. Gรผhne, and J. Siewert, Phys. Rev. Lett. 118, 200502 (2017). 3 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Existence of AME states ๏ง Still fundamental questions open. For qubits, ( ๐ = 2 ): ๐ = 2, 3, 4, 5, 6, 7, 8, 9, โฆ โข [1,2,3] By increasing the local dimension ๐ , we can find AME state ๏ง For qutrits, ( ๐ = 3 ): โข ๐ต ๐ถ ๐ท ๐ธ 2 ๐ ๐๐ = ๐ ๐ต๐๐น(4,3) = ๐, ๐, ๐ + ๐, ๐ + 2๐ โ๐, ๐ ๐,๐=0 modulo(3) 3 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
๐ -uniform states ๏ง Since AME states may not always exist, one can loosen the criteria for maximal mixedness, 1 2 3 4 ๐ ๐ = . . . ๐ต๐๐น(๐, ๐) states: A pure state ๐ of ๐ parties with local dimension ๐ is AME if for all ๐ โ *1,2, โฆ , ๐+ , ๐ โค ๐ 2 โน Tr ๐ ๐ ๐ ๐ โ ๐ ๐ - UNI(๐, ๐) states: A pure state ๐ of ๐ parties with local dimension ๐ is ๐ -uniform if for all ๐ โ *1,2, โฆ , ๐+ , ๐ โค ๐ โน Tr ๐ ๐ ๐ ๐ โ ๐ ๐ Obviously, an AME state is a ๐ = ๏ง 2 -uniform state. 4 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Why are ๐ -uniform states interesting? ๏ง Natural generalization of EPR and GHZ states ๏ง Resource for multipartite parallel teleportation and quantum secret sharing [1] ๐ต ๐ถ ๐ต ๐ถ ๐ + ๐ต๐ถ = 00 + 11 ๐ = ๐ 0 + ๐ 1 ๏ง ๐ -uniform states are a type of quantum error correcting codes having the maximal distance allowed by the Singleton bound (optimal codes) [2,3] [1] W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H.K. Lo, Phys. Rev. A, 86, 052335 (2012). [2] A.J. Scott, Phys. Rev. A 69, 052330 (2004). [3] M. Grassl and M Rรถtteler, IEEE Int. Symp. Inf. Teory (ISTT), 1108 (2015) . 5 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Why are AME states interesting? AME states of minimal support Classical error Quantum error correcting codes correcting codes Perfect tensors [1] ๏ง Holographic models implementing the AdS/CFT correspondence [2] [1] Z. R., C. Gogolin, A. Riera, A. Acรญn, J. Phys. A, 51, 7 (2018) [2] F. Patawski, B. Yoshida, D. Harlow, and J. Preskill, HEP, 06, 149 (2015). 6 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Content of this talk ๐ -uniform states of Classical error ๐ 1. correcting codes minimal support quantum part Classical part Constructing ๐ -uniform state of 2. non-minimal support: โฎ โฎ All terms of a state of complete orthonormal ๐ min support basis LU equivalent ๐ ๐ โฆ Graph states: 3. โฆ 7 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
๐ -uniform states of minimal support ๐ -uniform states of Classical error correcting codes minimal support 8 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
๐ -uniform states of minimal support ๏ง Classifying the ๐ -uniform states according to the number of their terms โถ they are expanded in product basis. ๐โ1 ๐ = ๐ 1 ,โฆ,๐ ๐ ๐ 1 , โฆ , ๐ ๐ ๐ ๐ 1 ,โฆ,๐ ๐ =0 ๐ ๐ โค # terms โค ๐ ๐ ๏ง # terms = ๐ ๐ : states with this number of terms or local unitary equivalent to this state are called ๐ -uniform of minimal support. ๏ง # terms > ๐ ๐ : states with this number of terms are ๐ -uniform of non-minimal support. 9 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Classical error correcting codes Channel Alice Bob Word 0 1 F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Classical error correcting codes error Channel Alice Bob Word 1 โ ๐ 0 0 ๐ 1 1 SEND RECEIVE F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Classical error correcting codes error Channel Alice Bob Encoding Word (Codewords) 0 000 111 1 F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Classical error correcting codes error Channel Alice Bob Encoding Error Word (Codewords) 0 000 010 111 1 101 F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Classical error correcting codes error Channel Alice Bob Encoding Error Correction Decoding Word (Codewords) 0 000 000 0 010 111 1 101 111 1 F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Classical error correcting codes error Channel Alice Bob Encoding Error Correction Decoding Word (Codewords) 0 000 000 0 010 111 1 101 111 1 ๐ = 1 ๐ = (๐ฆ 1 , โฆ , ๐ฆ ๐ ) F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Classical error correcting codes error Channel Alice Bob Encoding Error Correction Decoding Word (Codewords) 0 000 000 0 010 111 1 101 111 1 ๐ = 3 ๐ = 1 ๐ = (๐ฆ 1 , โฆ , ๐ฆ ๐ ) ๐ = (๐ฆ 1 , โฆ , ๐ฆ ๐ , ๐ฆ ๐+1 , โฆ , ๐ฆ ๐ ) Message symbols Check symbols F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Classical error correcting codes error Channel Alice Bob Encoding Error Correction Decoding Word (Codewords) 0 000 000 0 010 ๐ ๐ผ 111 1 101 111 1 ๐ = 3 ๐ = 1 ๐ ๐ผ = 2๐ข + 1 ๐ = (๐ฆ 1 , โฆ , ๐ฆ ๐ ) ๐ = (๐ฆ 1 , โฆ , ๐ฆ ๐ , ๐ฆ ๐+1 , โฆ , ๐ฆ ๐ ) Message symbols Check symbols F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐ -uniform states of non-minimal support - study the graph states Zahra Raissi
Recommend
More recommend