constructing uniform states of non minimal support
play

Constructing -uniform states of non-minimal support Zahra Raissi, - PowerPoint PPT Presentation

Constructing -uniform states of non-minimal support Zahra Raissi, Adam Teixid, Christian Gogolin, and Antonio Acn ICFO - The Institute of Photonic Sciences Quantum Information and String Theory (Japan), June 2019 -uniform states


  1. Constructing ๐‘™ -uniform states of non-minimal support Zahra Raissi, Adam Teixidรณ, Christian Gogolin, and Antonio Acรญn ICFO - The Institute of Photonic Sciences Quantum Information and String Theory (Japan), June 2019

  2. ๐‘™ -uniform states and Absolutely Maximally Entangled (AME) states There is a fundamental question to ask, which states are useful for quantum information applications? 1 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  3. What are AME states? 1 2 3 4 ๐œ” = 2 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  4. What are AME states? 1 2 3 4 ๐œ” = Tr *1,2+ ๐‘‘ ๐œ” ๐œ” โˆ ๐Ÿš 2 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  5. What are AME states? 1 2 3 4 ๐œ” = Tr *1,3+ ๐‘‘ ๐œ” ๐œ” โˆ ๐Ÿš 2 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  6. What are AME states? 1 2 3 4 ๐œ” = Tr *1,4+ ๐‘‘ ๐œ” ๐œ” โˆ ๐Ÿš 2 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  7. What are AME states? 1 2 3 4 ๐œ” = Tr *3,4+ ๐‘‘ ๐œ” ๐œ” โˆ ๐Ÿš ๐ต๐‘๐น(๐‘œ, ๐‘Ÿ) : A pure state of ๐‘œ parties with local dimension ๐‘Ÿ is AME if for all ๐‘‡ โŠ‚ 1, โ€ฆ , ๐‘œ ๐‘‡ โ‰ค ๐‘œ 2 โŸน ๐œ ๐‘‡ = Tr ๐‘‡ ๐‘‘ ๐œ” ๐œ” โˆ ๐Ÿš 2 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  8. Existence of AME states ๏‚ง Still fundamental questions open. [1] A. Higuchi, A. and Sudbery, Phys. Lett. A 273,213 (2000). [2] A. J. Scott, Phys. Rev. A, 69, 052330 (2004). [3] F. Huber, O. Gรผhne, and J. Siewert, Phys. Rev. Lett. 118, 200502 (2017). 3 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  9. Existence of AME states ๏‚ง Still fundamental questions open. For qubits, ( ๐‘Ÿ = 2 ): ๐‘œ = 2, 3 โ€ข ๐ต ๐ถ ๐œš + = 00 + 11 ๐œ ๐‘— = ๐Ÿš โˆ€๐‘— ๐ท ๐œ ๐‘— = ๐Ÿš ๐ป๐ผ๐‘Ž = 000 + 111 โˆ€๐‘— ๐ต ๐ถ [1] A. Higuchi, A. and Sudbery, Phys. Lett. A 273,213 (2000). [2] A. J. Scott, Phys. Rev. A, 69, 052330 (2004). [3] F. Huber, O. Gรผhne, and J. Siewert, Phys. Rev. Lett. 118, 200502 (2017). 3 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  10. Existence of AME states ๏‚ง Still fundamental questions open. For qubits, ( ๐‘Ÿ = 2 ): ๐‘œ = 2, 3, 4, 5, 6, 7, 8, 9, โ€ฆ โ€ข [1,2,3] ๐ต ๐ถ ๐œš + = 00 + 11 ๐œ ๐‘— = ๐Ÿš โˆ€๐‘— ๐ท ๐œ ๐‘— = ๐Ÿš ๐ป๐ผ๐‘Ž = 000 + 111 โˆ€๐‘— ๐ต ๐ถ [1] A. Higuchi, A. and Sudbery, Phys. Lett. A 273,213 (2000). [2] A. J. Scott, Phys. Rev. A, 69, 052330 (2004). [3] F. Huber, O. Gรผhne, and J. Siewert, Phys. Rev. Lett. 118, 200502 (2017). 3 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  11. Existence of AME states ๏‚ง Still fundamental questions open. For qubits, ( ๐‘Ÿ = 2 ): ๐‘œ = 2, 3, 4, 5, 6, 7, 8, 9, โ€ฆ โ€ข [1,2,3] By increasing the local dimension ๐‘Ÿ , we can find AME state ๏‚ง For qutrits, ( ๐‘Ÿ = 3 ): โ€ข ๐ต ๐ถ ๐ท ๐ธ 2 ๐œ ๐‘—๐‘˜ = ๐Ÿš ๐ต๐‘๐น(4,3) = ๐‘—, ๐‘˜, ๐‘— + ๐‘˜, ๐‘— + 2๐‘˜ โˆ€๐‘—, ๐‘˜ ๐‘—,๐‘˜=0 modulo(3) 3 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  12. ๐‘™ -uniform states ๏‚ง Since AME states may not always exist, one can loosen the criteria for maximal mixedness, 1 2 3 4 ๐‘œ ๐œ” = . . . ๐ต๐‘๐น(๐‘œ, ๐‘Ÿ) states: A pure state ๐œ” of ๐‘œ parties with local dimension ๐‘Ÿ is AME if for all ๐‘‡ โŠ‚ *1,2, โ€ฆ , ๐‘œ+ , ๐‘‡ โ‰ค ๐‘œ 2 โŸน Tr ๐‘‡ ๐‘‘ ๐œ” ๐œ” โˆ ๐Ÿš ๐‘™ - UNI(๐‘œ, ๐‘Ÿ) states: A pure state ๐œ” of ๐‘œ parties with local dimension ๐‘Ÿ is ๐‘™ -uniform if for all ๐‘‡ โŠ‚ *1,2, โ€ฆ , ๐‘œ+ , ๐‘‡ โ‰ค ๐‘™ โŸน Tr ๐‘‡ ๐‘‘ ๐œ” ๐œ” โˆ ๐Ÿš ๐‘œ Obviously, an AME state is a ๐‘™ = ๏‚ง 2 -uniform state. 4 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  13. Why are ๐‘™ -uniform states interesting? ๏‚ง Natural generalization of EPR and GHZ states ๏‚ง Resource for multipartite parallel teleportation and quantum secret sharing [1] ๐ต ๐ถ ๐ต ๐ถ ๐œš + ๐ต๐ถ = 00 + 11 ๐œ’ = ๐‘ 0 + ๐‘ 1 ๏‚ง ๐‘™ -uniform states are a type of quantum error correcting codes having the maximal distance allowed by the Singleton bound (optimal codes) [2,3] [1] W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H.K. Lo, Phys. Rev. A, 86, 052335 (2012). [2] A.J. Scott, Phys. Rev. A 69, 052330 (2004). [3] M. Grassl and M Rรถtteler, IEEE Int. Symp. Inf. Teory (ISTT), 1108 (2015) . 5 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  14. Why are AME states interesting? AME states of minimal support Classical error Quantum error correcting codes correcting codes Perfect tensors [1] ๏‚ง Holographic models implementing the AdS/CFT correspondence [2] [1] Z. R., C. Gogolin, A. Riera, A. Acรญn, J. Phys. A, 51, 7 (2018) [2] F. Patawski, B. Yoshida, D. Harlow, and J. Preskill, HEP, 06, 149 (2015). 6 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  15. Content of this talk ๐‘™ -uniform states of Classical error ๐œ” 1. correcting codes minimal support quantum part Classical part Constructing ๐‘™ -uniform state of 2. non-minimal support: โ‹ฎ โ‹ฎ All terms of a state of complete orthonormal ๐œš min support basis LU equivalent ๐œ” ๐œš โ€ฆ Graph states: 3. โ€ฆ 7 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  16. ๐‘™ -uniform states of minimal support ๐‘™ -uniform states of Classical error correcting codes minimal support 8 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  17. ๐‘™ -uniform states of minimal support ๏‚ง Classifying the ๐‘™ -uniform states according to the number of their terms โŸถ they are expanded in product basis. ๐‘Ÿโˆ’1 ๐œ” = ๐‘˜ 1 ,โ€ฆ,๐‘˜ ๐‘œ ๐‘˜ 1 , โ€ฆ , ๐‘˜ ๐‘œ ๐‘‘ ๐‘˜ 1 ,โ€ฆ,๐‘˜ ๐‘œ =0 ๐‘Ÿ ๐‘™ โ‰ค # terms โ‰ค ๐‘Ÿ ๐‘œ ๏‚ง # terms = ๐‘Ÿ ๐‘™ : states with this number of terms or local unitary equivalent to this state are called ๐‘™ -uniform of minimal support. ๏‚ง # terms > ๐‘Ÿ ๐‘™ : states with this number of terms are ๐‘™ -uniform of non-minimal support. 9 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  18. Classical error correcting codes Channel Alice Bob Word 0 1 F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  19. Classical error correcting codes error Channel Alice Bob Word 1 โˆ’ ๐‘ž 0 0 ๐‘ž 1 1 SEND RECEIVE F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  20. Classical error correcting codes error Channel Alice Bob Encoding Word (Codewords) 0 000 111 1 F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  21. Classical error correcting codes error Channel Alice Bob Encoding Error Word (Codewords) 0 000 010 111 1 101 F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  22. Classical error correcting codes error Channel Alice Bob Encoding Error Correction Decoding Word (Codewords) 0 000 000 0 010 111 1 101 111 1 F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  23. Classical error correcting codes error Channel Alice Bob Encoding Error Correction Decoding Word (Codewords) 0 000 000 0 010 111 1 101 111 1 ๐‘™ = 1 ๐‘› = (๐‘ฆ 1 , โ€ฆ , ๐‘ฆ ๐‘™ ) F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  24. Classical error correcting codes error Channel Alice Bob Encoding Error Correction Decoding Word (Codewords) 0 000 000 0 010 111 1 101 111 1 ๐‘œ = 3 ๐‘™ = 1 ๐‘› = (๐‘ฆ 1 , โ€ฆ , ๐‘ฆ ๐‘™ ) ๐‘‘ = (๐‘ฆ 1 , โ€ฆ , ๐‘ฆ ๐‘™ , ๐‘ฆ ๐‘™+1 , โ€ฆ , ๐‘ฆ ๐‘œ ) Message symbols Check symbols F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

  25. Classical error correcting codes error Channel Alice Bob Encoding Error Correction Decoding Word (Codewords) 0 000 000 0 010 ๐‘’ ๐ผ 111 1 101 111 1 ๐‘œ = 3 ๐‘™ = 1 ๐‘’ ๐ผ = 2๐‘ข + 1 ๐‘› = (๐‘ฆ 1 , โ€ฆ , ๐‘ฆ ๐‘™ ) ๐‘‘ = (๐‘ฆ 1 , โ€ฆ , ๐‘ฆ ๐‘™ , ๐‘ฆ ๐‘™+1 , โ€ฆ , ๐‘ฆ ๐‘œ ) Message symbols Check symbols F.J. MacWilliams and N.J.A. Sloane, The theory of error-correction codes (1977) - chapter 1. 10 Constructing ๐‘™ -uniform states of non-minimal support - study the graph states Zahra Raissi

Recommend


More recommend