constraining lorentz violation of gravitational waves
play

Constraining Lorentz Violation of Gravitational Waves with Lensing - PowerPoint PPT Presentation

Introduction Method Parameter Estimation GW In CUHK Backup Slide Constraining Lorentz Violation of Gravitational Waves with Lensing Adrian K.W. Chung and Tjonnie G.F. Li 1 1 Department of Physics, The Chinese University of Hong Kong,


  1. Introduction Method Parameter Estimation GW In CUHK Backup Slide Constraining Lorentz Violation of Gravitational Waves with Lensing Adrian K.W. Chung and Tjonnie G.F. Li 1 1 Department of Physics, The Chinese University of Hong Kong, Long-Term Workshop on Gravity and Cosmology, Yukawa Institute for Theoretical Physics, Kyoto University, 6th Febrauary, 2018 1/17

  2. Introduction Method Parameter Estimation GW In CUHK Backup Slide Introduction 1 Method 2 Parameter Estimation 3 GW In CUHK 4 2/17

  3. Introduction Method Parameter Estimation GW In CUHK Backup Slide Dispersion of Gravitational Waves With h = c = G = 1 Without Lorentz violation: ω = k (1) Isotropic dispersion [1]: E 2 = p 2 + m 2 g + Ap α ⇒ ω 2 = k 2 + m 2 g + Ak α (2) ⇒ v g ( f ) ≈ 1 − 1 2 m 2 f − 2 − 1 2 Af α − 2 3/17

  4. Introduction Method Parameter Estimation GW In CUHK Backup Slide Geometry of the Lensing 1 1 Figure 1. from R. Takahashi et al. " Arrival time differences between gravitational waves and electromagnetic signals due to gravitational lensing ". ApJ 835 (Jan. 2017), arXiv:1606.00458 4/17

  5. Introduction Method Parameter Estimation GW In CUHK Backup Slide Lensing (Diffraction) of Gravitational Waves Lensed waveform h L ( f ) = F ( f ; lensing parameters )˜ ˜ h ( f ) (3) Amplification function [2]: θ s ) ∝ (1 + z L ) f � F ( f ; � d 2 θ exp(2 πift d ( � θ, � θ s )) (4) i where t d is the arrival time delay between lensed and unlensed rays. Time delay: � � θ s ) = (1 + z L ) D L D S θ | 2 − ψ ( � t d ( � θ, � | � θ s − � θ s ) (5) c 2 D LS 5/17

  6. Introduction Method Parameter Estimation GW In CUHK Backup Slide Effect due to lensing 10 − 22 10 − 23 10 − 24 | h ( f ) | 10 − 25 10 − 26 10 − 27 unlensed 10 − 28 lensed by M L = 400 M ⊙ at y = 0 . 5 10 2 10 3 f (Hz) 6/17

  7. Introduction Method Parameter Estimation GW In CUHK Backup Slide The Central Question How would the lensing pattern look like if gravitational waves are with dispersions? 7/17

  8. Introduction Method Parameter Estimation GW In CUHK Backup Slide Arrival Time Delay With dispersion c t d → v g ( f ) t d (6) From now on β ( f ) = c/v g ( f ) Dispersion changes the phase differences along the rays. ⇒ lensing pattern is changed. 8/17

  9. Introduction Method Parameter Estimation GW In CUHK Backup Slide Amplification Functions For point mass lens � i w � π �� w 2 β F ( f ; y ) = exp 4 wβ 2 β (7) 1 − iw iw 2 β, 1; iw � � � 2 βy 2 � × Γ 2 β 1 F 1 where w = 8 πM L (1 + z L ) f , (7) can be reduced to known case [3] when there is no dispersion. 9/17

  10. Introduction Method Parameter Estimation GW In CUHK Backup Slide Image Pattern 3 . 0 10 − 22 Dispersionless, m = A = α = 0 . 0 Dispersive, m g = 0 . 0 , A = 100 . 0 , α = 0 . 5 2 . 5 10 − 23 10 − 24 2 . 0 | F ( f ) | | h ( f ) | 10 − 25 1 . 5 10 − 26 1 . 0 10 − 27 0 . 5 Dispersionless, m = A = α = 0 . 0 10 − 28 Dispersive, m g = 0 . 0 , A = 100 . 0 , α = 0 . 5 0 . 0 10 2 10 3 10 2 10 3 f (Hz) f (Hz) (a) | F ( f ) | (b) | h ( f ) | 10/17

  11. Introduction Method Parameter Estimation GW In CUHK Backup Slide Parameter Estimations λ g = � /m g c Cumulative Posterior Probability lensed by M L = 400 M ⊙ at y = 0 . 5 Cumulative Posterior Probability lensed by M L = 400 M ⊙ at y = 0 . 5 1 . 0 1 . 0 unlensed unlensed 0 . 8 0 . 8 0 . 6 0 . 6 0 . 4 0 . 4 0 . 2 0 . 2 0 . 0 0 . 0 15 . 0 15 . 5 16 . 0 16 . 5 17 . 0 17 . 5 18 . 0 15 . 0 15 . 5 16 . 0 16 . 5 17 . 0 17 . 5 18 . 0 log λ m g [m] log λ m g [m] (c) d L = 200 Mpc (d) d L = 100 Mpc 11/17

  12. Introduction Method Parameter Estimation GW In CUHK Backup Slide Advantages Relies solely on the lensed signals. SNR of signal is boost. Improved constraint on m g 12/17

  13. Introduction Method Parameter Estimation GW In CUHK Backup Slide Summary Lensing pattern of gravitational waves with dispersions ⇒ probe dispersion using lensing. Better constrains on m g Systematic run is on going. Will have more complete results soon. Incorporating the SIS. 13/17

  14. Introduction Method Parameter Estimation GW In CUHK Backup Slide Our Awesome Group! 14/17

  15. Introduction Method Parameter Estimation GW In CUHK Backup Slide References 1 Saeed Mirshekari et al. " Constraining Lorentz-violating, modified dispersion relations with gravitational waves ". Phys. Rev. D 85, 024041. (Jan. 2012) 2 Schneider, et al (1992). " Gravitational Lenses ".Springer’s Publications. ISBN: 0941-7834. DOI: 10.1007/978-3-662-03758-4 3 R. Takahashi et al. " Wave Effects in the Gravitational Lensing of Gravitational Waves from Chirping Binaries ". ApJ 595 (Oct. 2003), pp. 1039-1051. eprint: astro-ph/0305055. 15/17

  16. Introduction Method Parameter Estimation GW In CUHK Backup Slide Overlap Plots × 10 − 43 × 10 − 30 6 1 . 0 6 1 . 0 5 5 0 . 8 0 . 8 A ( c = h = 1) A ( c = h = 1) 4 4 0 . 6 0 . 6 Overlap Overlap 3 3 0.96 0 . 9 7 0 . 4 0 . 4 2 2 0 . 9 6 0 . 9 7 0.99 0 . 2 0 . 2 1 1 0.99 0 0 360 380 400 420 440 360 380 400 420 440 M L ( M ⊙ ) M L ( M ⊙ ) (e) α = 0 (f) α = 0 . 5 16/17

  17. Introduction Method Parameter Estimation GW In CUHK Backup Slide Unlensed Dispersive GWs [1] Propagation time delay when A = 0 ∆ t e + m 2 � 1 − 1 � �� g ∆ t = (1 + z ) 2 D 0 (8) f ′ 2 f 2 e e This leads to a phase difference, δ Ψ( f ) = − πD 0 m 2 g (9) (1 + z ) f such that h disp ( f ) = h ( f ) e iδ Ψ( f ) (10) 17/17

Recommend


More recommend