constrained optimal discrimination designs for fourier
play

Constrained optimal discrimination designs for Fourier regression - PowerPoint PPT Presentation

Constrained optimal discrimination designs for Fourier regression models S. Biedermann, School of Mathematics, University of Southampton Title Page joint work with H. Dette and P. Hoffmann, Department of Mathematics, Bochum


  1. Constrained optimal discrimination designs for Fourier regression models S. Biedermann, School of Mathematics, University of Southampton Title Page joint work with ◭◭ ◮◮ H. Dette and P. Hoffmann, Department of Mathematics, Bochum ◭ ◮ June, 7th, 2007 Page 1 of 37 Go Back Full Screen Close Quit mODa 8, June 4-8, 2007, Almagro, Spain

  2. 0. Contents • The Fourier model Title Page • The design problem: constrained optimal discrimination ◭◭ ◮◮ designs ◭ ◮ • Canonical moments Page 2 of 37 Go Back • Results Full Screen Close Quit

  3. 1. The Fourier Regression Model n independent observations Y 1 , . . . , Y n at x 1 , . . . , x n where Y i ∼ N ( g 2 d ( x i ) , τ 2 ) and Title Page ◭◭ ◮◮ d d ◭ ◮ � � g 2 d ( x ) = a 0 + a j sin( jx ) + b j cos( jx ) , x ∈ [ − π, π ] j =1 j =1 Page 3 of 37 Go Back Full Screen a 0 , . . . , a d , b 1 , . . . , b d ∈ I R unknown model parameters, d ∈ I N Close Quit

  4. Used to model periodic phenomena, e.g., in the engineering, physical, biological and medical sciences, and in two-dimensional shape analysis, . . . Title Page ◭◭ ◮◮ ◭ ◮ Page 4 of 37 Go Back Full Screen Close Quit

  5. 2. The Design problem Do we really need the full model? Title Page Goal: Model identification ◭◭ ◮◮ Successive F -tests with hypotheses ◭ ◮ Page 5 of 37 H (2 d ) : b d = 0 , H (2 d − 1) : a d = 0 , 0 0 Go Back H (2 d − 2) : b d − 1 = 0 , H (2 d − 3) : a d − 1 = 0 , . . . , 0 0 H (0) Full Screen : a 0 = 0 0 Close in the models g 2 d , g 2 d − 1 , . . . , g 0 until H ( k ) is rejected 0 Quit

  6. Is there a way to influence (maximise) the power of these tests? Title Page The noncentrality parameter of the test for H ( k ) is: 0 ◭◭ ◮◮ k M − 1 k ( σ ) e k ) − 1 δ k ( σ ) = ( e T ◭ ◮ k = 1 , . . . , 2 d Page 6 of 37 where e k = (0 , 0 , . . . , 0 , 1) T ∈ I R k +1 and M − 1 k ( σ ) is the covari- Go Back ance matrix for estimating the full parameter vector in model Full Screen g k and σ is the design of the experiment. Close Quit

  7.    x 1 x 2 . . . x m Example: σ =  ω 1 ω 2 . . . ω m   Title Page 1 sin( x i ) cos( x i )   m � ◭◭ ◮◮   M 2 ( σ ) = ω i sin 2 ( x i ) sin( x i ) sin( x i ) cos( x i )     i =1   ◭ ◮ cos 2 ( x i ) cos( x i ) sin( x i ) cos( x i ) Page 7 of 37   Go Back 1 sin( x ) cos( x ) � π     = sin 2 ( x ) dσ ( x ) Full Screen  sin( x ) sin( x ) cos( x )    − π   cos 2 ( x ) cos( x ) sin( x ) cos( x ) Close Quit

  8. Recall: The non-centrality parameter δ k ( σ ) (and therefore the power of the F -test for H ( k ) 0 ) depends on the design σ Title Page For one test only: Maximise δ k ( σ ) with respect to σ ◭◭ ◮◮ → D ( k ) ֒ 1 -optimality ◭ ◮ (Equivalent to optimal design for estimating the highest order Page 8 of 37 parameter in model g k ) Go Back Full Screen Problem: It is impossible to maximise all δ k ( σ )’s simultan- Close eously Quit

  9. The Constrained Optimality Criterion Define the efficiency of a design σ for discriminating between models g k and g k − 1 as Title Page eff k ( σ ) := δ k ( σ ) k ) , k = 1 , . . . , 2 d ◭◭ ◮◮ δ k ( σ ∗ k is the D ( k ) ◭ ◮ where σ ∗ 1 -optimal design. Page 9 of 37 Assume that testing H (2 d ) is most important, and assign lower 0 Go Back boundaries γ k to each efficiency eff k ( σ ) according to the relative Full Screen importance of the corresponding discrimination problem. Close Quit

  10. A constrained optimal discriminating design σ ∗ maximises eff 2 d ( σ ) Title Page subject to ◭◭ ◮◮ eff k ( σ ) ≥ γ k , k = 2 d − 1 , 2 d − 2 , . . . , 2 d − 2 j − 1 ◭ ◮ for some j ∈ { 0 , . . . , d − 1 } . Page 10 of 37 Go Back Full Screen Close Quit

  11. Constrained optimisation problem : → only numerical solutions possible? ֒ ֒ → idea: rewrite criterion in terms of canonical moments to find Title Page analytical results ◭◭ ◮◮ 1. Show that a symmetric design is optimal ◭ ◮ Page 11 of 37 2. Transform σ into a design ξ σ on [ − 1 , 1] by  Go Back 2 σ ( x ) = 2 σ ( − x ) if 0 < x ≤ π  ξ σ (cos x ) =  σ (0) if x = 0 Full Screen 3. Express matrices M k ( σ ) in terms of ξ σ Close Quit

  12. Example:   1 sin( x ) cos( x ) � π     M 2 ( σ ) = sin 2 ( x ) dσ ( x ) sin( x ) sin( x ) cos( x )     − π   Title Page cos 2 ( x ) cos( x ) sin( x ) cos( x ) ◭◭ ◮◮   √ ◭ ◮ 1 − z 2 1 z � 1   √ √   Page 12 of 37 = 1 − z 2 dξ σ ( z ) 1 − z 2 1 − z 2 z     − 1 √   z 2 1 − z 2 z z Go Back M k is now “almost” a moment matrix, and the efficiencies eff k Full Screen of matrices of such a form can be expressed in terms of canonical Close moments. Quit

  13. 3. Canonical Moments (I) Canonical Moments p 1 , p 2 , . . . are transformations of the ordin- ary moments c 1 , c 2 , . . . of a probability measure. Title Page Definition: M class of probability measures with moments ◭◭ ◮◮ c 1 , . . . , c k − 1 , ◭ ◮ c + c − k = max µ ∈M c k ( µ ) , k = min µ ∈M c k ( µ ) Page 13 of 37 ξ probability measure on [ − 1 , 1] with moments c 1 , . . . , c k , . . . . Go Back Then the k th canonical moment p k of ξ is defined as Full Screen p k = c k − c − Close k k − c − c + k Quit

  14. p k = c k − c − k k − c − c + k Title Page Properties: ◭◭ ◮◮ • p k ∈ [0 , 1] for k = 1 , 2 , . . . ◭ ◮ • p k gives the relative position of c k in its moment space Page 14 of 37 given c k − 1 , . . . , c 1 Go Back • moment space for p 1 , . . . , p k is [0 , 1] k Full Screen Close Quit

  15. Example: The moment space for the second moment c 2 on [ − 1 , 1]. 2 = 1 , c − c + 2 = c 2 1 Title Page ◭◭ ◮◮ ◭ ◮ Page 15 of 37 Go Back Full Screen Close Quit

  16. Example: The moment space for the second canonical moment p 2 on [ − 1 , 1]. 2 = 1 , p − p + 2 = 0 (do not depend on the value of p 1 ) Title Page ◭◭ ◮◮ ◭ ◮ Page 16 of 37 Go Back Full Screen Close Quit

  17. Title Page ◭◭ ◮◮ Advantage of canonical moments: Maximisation of a function ◭ ◮ with respect to m canonical moments is maximisation on the Page 17 of 37 m -dimensional cube [0 , 1] m . Go Back Full Screen Close Quit

  18. Properties: • If m is the first index for which p m ∈ { 0 , 1 } then the sequence of canonical moments terminates at p m and the Title Page measure is supported at a finite number of points. ◭◭ ◮◮ • If a sequence p 1 , . . . , p 2 d is given, and there is no such ◭ ◮ m then the measure is not unique. One can always find a Page 18 of 37 measure with these canonical moments by adding arbitrary p i ’s. Go Back Full Screen • Given the canonical moments, the measure can be found by evaluating certain orthogonal polynomials (see section Close 5). Quit

  19. 4. Results Theorem 1 : If there exists a constrained optimal discrimin- ating design for ( γ 2 d − 2 j − 1 , . . . , γ 2 d − 1 ), the canonical moments Title Page up to the order 2 d of ξ σ ∗ are given by ( q k = 1 − p k ) ◭◭ ◮◮ ◭ ◮ Page 19 of 37 Go Back Full Screen Close Quit

  20. 4. Results Theorem 1 : If there exists a constrained optimal discrimin- ating design for ( γ 2 d − 2 j − 1 , . . . , γ 2 d − 1 ), the canonical moments Title Page up to the order 2 d of ξ σ ∗ are given by ( q k = 1 − p k ) ◭◭ ◮◮ p 2 n − 1 = 1 ◭ ◮ 2 , n = 1 , . . . , d, Page 20 of 37 Go Back Full Screen Close Quit

  21. 4. Results Theorem 1 : If there exists a constrained optimal discrimin- ating design for ( γ 2 d − 2 j − 1 , . . . , γ 2 d − 1 ), the canonical moments Title Page up to the order 2 d of ξ σ ∗ are given by ( q k = 1 − p k ) ◭◭ ◮◮ p 2 n − 1 = 1 ◭ ◮ 2 , n = 1 , . . . , d, Page 21 of 37 p 2 n = 1 2 , n = 1 , . . . , d − j − 1 Go Back Full Screen Close Quit

  22.  1 − max { 1 γ 2 d − 2 j +2 n − 1  } , 2 ,   2 2 n � d − j + n − 1  p 2 l q 2 l   l = d − j     if γ 2 d − 2 j +2 n − 1 > γ 2 d − 2 j +2 n    Title Page        max { 1 γ 2 d − 2 j +2 n ◭◭ ◮◮ p 2 d − 2 j +2 n = 2 , } , 2 2 n � d − j + n − 1 p 2 l q 2 l   l = d − j  ◭ ◮    if γ 2 d − 2 j +2 n ≥ γ 2 d − 2 j +2 n − 1 ,      Page 22 of 37        Go Back  n = 0 , . . . , j − 1  Full Screen Close Quit

  23.  1 − max { 1 γ 2 d − 2 j +2 n − 1  } , 2 ,   2 2 n � d − j + n − 1  p 2 l q 2 l   l = d − j     if γ 2 d − 2 j +2 n − 1 > γ 2 d − 2 j +2 n    Title Page        max { 1 γ 2 d − 2 j +2 n ◭◭ ◮◮ p 2 d − 2 j +2 n = 2 , } , 2 2 n � d − j + n − 1 p 2 l q 2 l   l = d − j  ◭ ◮    if γ 2 d − 2 j +2 n ≥ γ 2 d − 2 j +2 n − 1 ,      Page 23 of 37        Go Back  n = 0 , . . . , j − 1  Full Screen Close γ 2 d − 1 p 2 d = 1 − 2 2 j � d − 1 l = d − j p 2 l q 2 l Quit

Recommend


More recommend