congruences connecting modular forms and truncated
play

Congruences connecting modular forms and truncated hypergeometric - PowerPoint PPT Presentation

Congruences connecting modular forms and truncated hypergeometric series Minisymposium on Symbolic Combinatorics 2017 SIAM Conference on Applied Algebraic Geometry Armin Straub July 31, 2017 University of South Alabama 1 2 , 1


  1. Congruences connecting modular forms and truncated hypergeometric series Minisymposium on Symbolic Combinatorics 2017 SIAM Conference on Applied Algebraic Geometry Armin Straub July 31, 2017 University of South Alabama ˆ 1 ˇ ˙ ˇ 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1 ˇ ” b p p q p mod p 3 q 2 6 F 5 ˇ 1 1 , 1 , 1 , 1 , 1 p ´ 1 Joint work with: Robert Osburn Wadim Zudilin (University College Dublin) (University of Newcastle/ Radboud Universiteit) Congruences connecting modular forms and truncated hypergeometric series Armin Straub 1 / 19

  2. The wonderful world of A “ B ˆ n ˙ 2 ˆ n ` k ˙ˆ 2 k ˙ ˆ 3 n ` 1 ˙ˆ n ` k ˙ 3 EG ÿ n ÿ n p´ 1 q n ` k “ k k n n ´ k k k “ 0 k “ 0 Congruences connecting modular forms and truncated hypergeometric series Armin Straub 2 / 19

  3. The wonderful world of A “ B ˆ n ˙ 2 ˆ n ` k ˙ˆ 2 k ˙ ˆ 3 n ` 1 ˙ˆ n ` k ˙ 3 EG ÿ n ÿ n p´ 1 q n ` k “ k k n n ´ k k k “ 0 k “ 0 ˆ n ˙ 2 ˆ n ` k ˙ 2 EG ÿ n Ap´ ery ’78 u n “ k k k “ 0 satisfies the difference equation p n ` 1 q 3 u n ` 1 “ p 2 n ` 1 qp 17 n 2 ` 17 n ` 5 q u n ´ n 3 u n ´ 1 . Congruences connecting modular forms and truncated hypergeometric series Armin Straub 2 / 19

  4. The wonderful world of A “ B ˆ n ˙ 2 ˆ n ` k ˙ˆ 2 k ˙ ˆ 3 n ` 1 ˙ˆ n ` k ˙ 3 EG ÿ n ÿ n p´ 1 q n ` k “ k k n n ´ k k k “ 0 k “ 0 ˙ 2 ˜ n ¸ ˆ n ˙ 2 ˆ n ` k EG ÿ n ÿ ÿ k p´ 1 q m ´ 1 1 Ap´ ery ’78 u n “ j 3 ` 2 m 3 ` n ˘` n ` m ˘ k k k “ 0 j “ 1 m “ 1 m m satisfies the difference equation p n ` 1 q 3 u n ` 1 “ p 2 n ` 1 qp 17 n 2 ` 17 n ` 5 q u n ´ n 3 u n ´ 1 . Congruences connecting modular forms and truncated hypergeometric series Armin Straub 2 / 19

  5. The wonderful world of A “ B ˆ n ˙ 2 ˆ n ` k ˙ˆ 2 k ˙ ˆ 3 n ` 1 ˙ˆ n ` k ˙ 3 EG ÿ n ÿ n p´ 1 q n ` k “ k k n n ´ k k k “ 0 k “ 0 ˙ 2 ˜ n ¸ ˆ n ˙ 2 ˆ n ` k EG ÿ n ÿ ÿ k p´ 1 q m ´ 1 1 Ap´ ery ’78 u n “ j 3 ` 2 m 3 ` n ˘` n ` m ˘ k k k “ 0 j “ 1 m “ 1 m m satisfies the difference equation p n ` 1 q 3 u n ` 1 “ p 2 n ` 1 qp 17 n 2 ` 17 n ` 5 q u n ´ n 3 u n ´ 1 . ˆ n ˙ 2 ˆ n ` k ˙ 2 ` EG n ÿ ˘ 1 ´ 2 k p 2 H k ´ H n ` k ´ H n ´ k q “ 1 k k k “ 0 Scott Ahlgren, Shalosh B. Ekhad, Ken Ono, Doron Zeilberger A binomial coefficient identity associated to a conjecture of Beukers Electronic Journal of Combinatorics, Vol. 5, 1998, #R10 Congruences connecting modular forms and truncated hypergeometric series Armin Straub 2 / 19

  6. The wonderful world of A ” B ˆ n ˙ 2 ˆ n ` k ˙ 2 ` EG ÿ n ˘ again 1 ´ 2 k p 2 H k ´ H n ` k ´ H n ´ k q “ 1 k k k “ 0 • Below, p ą 2 is a prime and n “ p p ´ 1 q{ 2 . ˆ n ˙ 3 ˆ n ` k ˙ 3 ` EG ÿ n ˘ p´ 1 q k OSZ 1 ´ 3 k p 2 H k ´ H n ` k ´ H n ´ k q 2017 k k k “ 0 ˆ n ˙ 2 ˆ n ` k ˙ 2 n ÿ p mod p 2 q ” k k k “ 0 Congruences connecting modular forms and truncated hypergeometric series Armin Straub 3 / 19

  7. The wonderful world of A ” B ˆ n ˙ 2 ˆ n ` k ˙ 2 ` EG ÿ n ˘ again 1 ´ 2 k p 2 H k ´ H n ` k ´ H n ´ k q “ 1 k k k “ 0 • Below, p ą 2 is a prime and n “ p p ´ 1 q{ 2 . ˆ n ˙ 3 ˆ n ` k ˙ 3 ` EG ÿ n ˘ p´ 1 q k OSZ 1 ´ 3 k p 2 H k ´ H n ` k ´ H n ´ k q 2017 k k k “ 0 ˆ n ˙ 2 ˆ n ` k ˙ 2 n ÿ p mod p 2 q ” k k k “ 0 ˆ n ˙ 2 ˆ n ` k ˙ 2 ˆ n ˙ 2 ˆ n ` k ˙ˆ 2 k ˙ EG ÿ n ÿ n ” p´ 1 q n p mod p 2 q OSZ 2017 k k k k n k “ 0 k “ 0 • We have no general algorithmic approach to such congruences. • Instead, we had to find suitable intermediate identities . Congruences connecting modular forms and truncated hypergeometric series Armin Straub 3 / 19

  8. Ap´ ery numbers and the irrationality of ζ p 3 q • The Ap´ ery numbers 1 , 5 , 73 , 1445 , . . . ˆ n ˙ 2 ˆ n ` k ˙ 2 n ÿ A p n q “ k k satisfy k “ 0 p n ` 1 q 3 A p n ` 1 q “ p 2 n ` 1 qp 17 n 2 ` 17 n ` 5 q A p n q ´ n 3 A p n ´ 1 q . Congruences connecting modular forms and truncated hypergeometric series Armin Straub 4 / 19

  9. Ap´ ery numbers and the irrationality of ζ p 3 q • The Ap´ ery numbers 1 , 5 , 73 , 1445 , . . . ˆ n ˙ 2 ˆ n ` k ˙ 2 n ÿ A p n q “ k k satisfy k “ 0 p n ` 1 q 3 A p n ` 1 q “ p 2 n ` 1 qp 17 n 2 ` 17 n ` 5 q A p n q ´ n 3 A p n ´ 1 q . ζ p 3 q “ ř 8 1 THM n 3 is irrational. n “ 1 Ap´ ery ’78 The same recurrence is satisfied by the “near”-integers proof ˙ 2 ˜ n ¸ ˆ n ˙ 2 ˆ n ` k n k ÿ ÿ ÿ p´ 1 q m ´ 1 1 2 m 3 ` n ˘` n ` m ˘ B p n q “ j 3 ` . k k m “ 1 k “ 0 j “ 1 m m Then, B p n q A p n q Ñ ζ p 3 q . But too fast for ζ p 3 q to be rational. Congruences connecting modular forms and truncated hypergeometric series Armin Straub 4 / 19

  10. Hypergeometric series Trivially, the Ap´ ery numbers have the representation EG ˆ n ˙ 2 ˆ n ` k ˙ 2 ÿ n A p n q “ k k k “ 0 ˆ ´ n, ´ n, n ` 1 , n ` 1 ˇ ˙ ˇ ˇ “ 4 F 3 ˇ 1 . 1 , 1 , 1 • Here, 4 F 3 is a hypergeometric series: ˆ a 1 , . . . , a p ˇ ˙ 8 ÿ ˇ z n p a 1 q k ¨ ¨ ¨ p a p q k ˇ p F q ˇ z “ n ! . p b 1 q k ¨ ¨ ¨ p b q q k b 1 , . . . , b q k “ 0 Congruences connecting modular forms and truncated hypergeometric series Armin Straub 5 / 19

  11. Hypergeometric series Trivially, the Ap´ ery numbers have the representation EG ˆ n ˙ 2 ˆ n ` k ˙ 2 ÿ n A p n q “ k k k “ 0 ˆ ´ n, ´ n, n ` 1 , n ` 1 ˇ ˙ ˇ ˇ “ 4 F 3 ˇ 1 . 1 , 1 , 1 • Here, 4 F 3 is a hypergeometric series: ˆ a 1 , . . . , a p ˇ ˙ 8 ÿ ˇ z n p a 1 q k ¨ ¨ ¨ p a p q k ˇ p F q ˇ z “ n ! . p b 1 q k ¨ ¨ ¨ p b q q k b 1 , . . . , b q k “ 0 • Similary, we have the truncated hypergeometric series ˆ a 1 , . . . , a p ˇ ˙ ÿ M ˇ z n p a 1 q k ¨ ¨ ¨ p a p q k ˇ p F q ˇ z “ n ! . p b 1 q k ¨ ¨ ¨ p b q q k b 1 , . . . , b q M k “ 0 Congruences connecting modular forms and truncated hypergeometric series Armin Straub 5 / 19

  12. A first connection to modular forms • The Ap´ ery numbers A p n q satisfy 1 , 5 , 73 , 1145 , . . . ˆ η 12 p τ q η 12 p 6 τ q ˙ n ÿ η 7 p 2 τ q η 7 p 3 τ q “ A p n q . η 5 p τ q η 5 p 6 τ q η 12 p 2 τ q η 12 p 3 τ q n ě 0 modular form modular function 1 ` 5 q ` 13 q 2 ` 23 q 3 ` O p q 4 q q ´ 12 q 2 ` 66 q 3 ` O p q 4 q q “ e 2 πiτ Congruences connecting modular forms and truncated hypergeometric series Armin Straub 6 / 19

  13. A first connection to modular forms • The Ap´ ery numbers A p n q satisfy 1 , 5 , 73 , 1145 , . . . ˆ η 12 p τ q η 12 p 6 τ q ˙ n ÿ η 7 p 2 τ q η 7 p 3 τ q “ A p n q . η 5 p τ q η 5 p 6 τ q η 12 p 2 τ q η 12 p 3 τ q n ě 0 modular form modular function 1 ` 5 q ` 13 q 2 ` 23 q 3 ` O p q 4 q q ´ 12 q 2 ` 66 q 3 ` O p q 4 q q “ e 2 πiτ ? EG As a consequence, with z “ 1 ´ 34 x ` x 2 , ˆ 1 ˇ ˙ ÿ 2 , 1 2 , 1 ˇ 17 ´ x ´ z 1024 x A p n q x n “ ˇ ? 2 2 p 1 ` x ` z q 3 { 2 3 F 2 ˇ ´ . p 1 ´ x ` z q 4 1 , 1 4 n ě 0 For contrast, the Ap´ ery numbers are the diagonal coefficients of EG S 2014 1 . p 1 ´ x 1 ´ x 2 qp 1 ´ x 3 ´ x 4 q ´ x 1 x 2 x 3 x 4 Congruences connecting modular forms and truncated hypergeometric series Armin Straub 6 / 19

  14. A second connection to modular forms For primes p ą 2 , the Ap´ ery numbers satisfy THM Ahlgren– ˆ p ´ 1 ˙ Ono ’00 p mod p 2 q ” a p p q A 2 where a p n q are the Fourier coefficients of the Hecke eigenform ÿ 8 η p 2 τ q 4 η p 4 τ q 4 “ a p n q q n n “ 1 of weight 4 for the modular group Γ 0 p 8 q . • conjectured by Beukers ’87, and proved modulo p • similar congruences modulo p for other Ap´ ery-like numbers Congruences connecting modular forms and truncated hypergeometric series Armin Straub 7 / 19

  15. The “super” in these congruences Fourier coefficients a p p q Ap´ ery sequence A p n q Congruences connecting modular forms and truncated hypergeometric series Armin Straub 8 / 19

  16. The “super” in these congruences Fourier coefficients a p p q Œ point counts on modular curves modulo p Œ character sums Œ Gaussian hypergeometric series Œ harmonic sums Œ truncated hypergeometric series Œ Ap´ ery sequence A p n q Congruences connecting modular forms and truncated hypergeometric series Armin Straub 8 / 19

  17. The “super” in these congruences Fourier coefficients a p p q Œ point counts on modular curves modulo p Œ equalities character sums Œ Gaussian hypergeometric series Œ harmonic sums “easy” mod p Œ truncated hypergeometric series Œ Ap´ ery sequence A p n q Congruences connecting modular forms and truncated hypergeometric series Armin Straub 8 / 19

  18. Kilbourn’s extension of the Ahlgren–Ono supercongruence ˆ 1 ˇ ˙ THM 2 , 1 2 , 1 2 , 1 ˇ ˇ p mod p 3 q , Kilbourn 2 ” a p p q 4 F 3 ˇ 1 2006 1 , 1 , 1 p ´ 1 for primes p ą 2 . Again, a p n q are the Fourier coefficients of 8 ÿ η p 2 τ q 4 η p 4 τ q 4 “ a p n q q n . n “ 1 Congruences connecting modular forms and truncated hypergeometric series Armin Straub 9 / 19

Recommend


More recommend