concurrent kleene algebra free model and completeness
play

Concurrent Kleene Algebra: Free Model and Completeness e 1 Paul - PowerPoint PPT Presentation

Concurrent Kleene Algebra: Free Model and Completeness e 1 Paul Brunet 1 Alexandra Silva 1 Fabio Zanasi 1 Tobias Kapp 1 University College London Brouwer Seminar T. Kapp e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free


  1. Concurrent Kleene Algebra: Free Model and Completeness e 1 Paul Brunet 1 Alexandra Silva 1 Fabio Zanasi 1 Tobias Kapp´ 1 University College London Brouwer Seminar T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 1 21

  2. Introduction Kleene Algebra models program flow . abort (0) and skip (1) atomic actions ( a , b , . . . ) ( e + f ) ∗ ≡ KA e ∗ · ( f · e ∗ ) ∗ non-deterministic choice ( + ) sequential composition ( · ) indefinite repetition ( ∗ ) T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 2 21

  3. Introduction Thread 1 Thread 2 a c b d How do we model concurrent composition? T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 3 21

  4. Introduction Thread 1 Thread 2 a c b d � �� � abcd + acbd + ··· ? Interleaving is a stop-gap: concurrency information lacking from traces. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 3 21

  5. Introduction Thread 1 Thread 2 a c b d � �� � ( a · b ) � ( c · d ) Concurrent KA 1 adds parallel composition ( � ) 1 Hoare, M¨ oller, Struth, and Wehrman 2009. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 3 21

  6. Introduction KA is well-studied: Decision procedures [Hopcroft and Karp 1971; Bonchi and Pous 2013] Automata, coalgebra [Kleene 1956; Brzozowski 1964; Silva 2010] Free model, completeness [Salomaa 1966; Conway 1971; Kozen 1994] T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 4 21

  7. Introduction KA is well-studied: Decision procedures [Hopcroft and Karp 1971; Bonchi and Pous 2013] Automata, coalgebra [Kleene 1956; Brzozowski 1964; Silva 2010] Free model, completeness [Salomaa 1966; Conway 1971; Kozen 1994] CKA is a work in progress: Decision procedures [Brunet, Pous, and Struth 2017] Automata [Lodaya and Weil 2000; Jipsen and Moshier 2016] Free model, completeness [Gischer 1988; Laurence and Struth 2014] See also [K . , Brunet, Luttik, Silva, and Zanasi 2017]. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 4 21

  8. Introduction Theorem (Kozen 1994) The axioms for KA are complete for equivalence: e ≡ KA f ⇐ ⇒ � e � KA = � f � KA � − � KA is the regular language interpretation of e. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 5 21

  9. Introduction Theorem (Kozen 1994) The axioms for KA are complete for equivalence: e ≡ KA f ⇐ ⇒ � e � KA = � f � KA � − � KA is the regular language interpretation of e. Question Can we find axioms for CKA that are complete for equivalence? That is, ? e ≡ CKA f ⇐ ⇒ � e � CKA = � f � CKA � − � CKA is a generalized regular language interpretation of e. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 5 21

  10. Caveat auditor Completeness for CKA is also shown in [Laurence and Struth 2017]; c.f. https://arxiv.org/abs/1705.05896 Our method differs, because it. . . . . . is fully syntactic . . . uses fixpoints instead of congruences . . . is explicitly constructive We do owe part of our method to op. cit. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 6 21

  11. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 7 21

  12. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c Pomset language: set of pomsets T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 7 21

  13. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c Pomset language: set of pomsets Composition lifts: U · V = { U · V : U ∈ U , V ∈ V} U � V = { U � V : U ∈ U , V ∈ V} T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 7 21

  14. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c Pomset language: set of pomsets Composition lifts: U · V = { U · V : U ∈ U , V ∈ V} U � V = { U � V : U ∈ U , V ∈ V} Kleene star: U ∗ = � n <ω U n T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 7 21

  15. Preliminaries T is the set generated by the grammar e , f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e � f | e ∗ T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  16. Preliminaries T is the set generated by the grammar e , f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e � f | e ∗ BKA semantics is given by � − � BKA : T → 2 Pom Σ . � e ∗ � BKA = � e � ∗ � 0 � BKA = ∅ � e + f � BKA = � e � BKA ∪ � f � BKA BKA � 1 � BKA = { 1 } � e · f � BKA = � e � BKA · � f � BKA � a � BKA = { a } � e � f � BKA = � e � BKA � � f � BKA T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  17. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  18. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  19. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  20. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  21. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  22. Preliminaries Theorem (Laurence and Struth 2014) The axioms for BKA are complete for equivalence: e ≡ BKA f ⇐ ⇒ � e � BKA = � f � BKA T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  23. Preliminaries Pomset subsumption: a c a c ⊑ b d b d T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 9 21

Recommend


More recommend