Concretely Efficient La Large-Sc Scale M MPC wi with th Acti tive Securi rity ty (or (or, Ti TinyKeys fo for Ti TinyOT) ) Carmit Hazay, Emmanuela Orsini, Peter Scholl and Eduardo Soria-Vazquez
La Large-Sc Scale MP MPC Current practical MPC doesnβt Growing number of users want to compute privately and jointly . scale well for large numbers of parties. Outsource? Fixed set Sample a of parties committee 1229 farmers +6000 relays (auction) (statistics) Eduardo Soria-Vazquez 2
MP MPC C setting in this talk Main focus: β’ Concrete efficiency for large numbers of parties Preprocessing (e.g. π in 10s, 100s). Adversary: corr. β’ Static, active . rand. β’ Dishonest majority , but not full threshold ! a b β’ Assume β > 1 honest parties to increase efficiency. Online Model of Computation: c d β’ Boolean circuits. β’ Preprocessing phase. Eduardo Soria-Vazquez 3
Ou Our resu sults New TinyOT-style protocol (actively secure, dishonest majority) exploiting more honest parties: v Up to 34x less communication compared with [WRK17]βs TinyOT with π β 1 corruptions. v Up to 18x less communication compared with [WRK17]βs TinyOT mixed with committees ( β > 1 honest parties). v Good improvements (2-6x less comm) with just 10% honest parties . Eduardo Soria-Vazquez 4
Ho How to to scale ale Tin inyOT
Th The Ti TinyOT pr protocol [NNOB12] β’ Based on additive secret sharing: π¦ = π¦ ) + π¦ + . β’ Multiplications computed using Beaverβs triples: ( π² , π³ , π²π³ ) . β’ Active security: Information-theoretic MACs (authenticated bits). Eduardo Soria-Vazquez 6
Th The Ti TinyOT pr protocol [NNOB12] β’ Based on additive secret sharing: π¦ = π¦ ) + π¦ + . β’ Multiplications computed using Beaverβs triples: ( π² , π³ , π²π³ ) . β’ Active security: Information-theoretic MACs (authenticated bits). π[π¦ ) ] = π[π¦ ) ] + π¦ ) Β· β π¦ ) , π π¦ ) π¦ ) β {0,1} β, π π¦ ) β 0,1 )+4 π π¦ ) β 0,1 )+4 Eduardo Soria-Vazquez 7
Th The Ti TinyOT pr protocol [NNOB12] β’ Based on additive secret sharing: π¦ = π¦ ) + π¦ + . β’ Multiplications computed using Beaverβs triples: ( π² , π³ , π²π³ ) . β’ Active security: Information-theoretic MACs (authenticated bits). π[π¦ + ] = π[π¦ + ] + π¦ + Β· β π¦ + , π π¦ + π¦ + β {0,1} β, π π¦ + β 0,1 )+4 π π¦ + β 0,1 )+4 Eduardo Soria-Vazquez 8
Mu Multi-Pa Party Ti TinyOT Eduardo Soria-Vazquez 9
Th The Ti TinyOT pr protocol [NNOB12] β’ Based on additive secret sharing: π¦ = π¦ ) + π¦ + . β’ Multiplications computed using Beaverβs triples: ( π² , π³ , π²π³ ) . β’ Active security: Information-theoretic MACs (authenticated bits). π[π¦ ) ] = π[π¦ ) ] + π¦ ) Β· β π¦ ) + 1, π π¦ ) + β π¦ ) β {0,1} β, π π¦ ) β 0,1 )+4 π π¦ ) β 0,1 )+4 Eduardo Soria-Vazquez 10
Th The Ti TinyOT pr protocol [NNOB12] β’ Based on additive secret sharing: π¦ = π¦ ) + π¦ + . β’ Multiplications computed using Beaverβs triples: ( π² , π³ , π²π³ ) . β’ Active security: Information-theoretic MACs (authenticated bits). π[π¦ ) ] = π[π¦ ) ] + π¦ ) Β· β π π¦ ) + β π¦ ) + 1, π¦ ) β {0,1} β, π π¦ ) β 0,1 β β βͺ 128 π π¦ ) β 0,1 β Eduardo Soria-Vazquez 11
Th The Ti TinyOT pr protocol [NNOB12] β’ Based on additive secret sharing: π¦ = π¦ ) + π¦ + . β’ Multiplications computed using Beaverβs triples: ( π² , π³ , π²π³ ) . β’ Active security: Information-theoretic MACs (authenticated bits). π[π¦ ) ] = π[π¦ ) ] + π¦ ) Β· β β, π π¦ ) β 0,1 β β βͺ 128 π¦ ) β {0,1} β, π π¦ ) β 0,1 β β Β· β β₯ π‘ π π¦ ) β 0,1 β Eduardo Soria-Vazquez 12
Co Commi mmittees s + + Ti TinyOT + + Short Keys Eduardo Soria-Vazquez 13
Co Commi mmittees s + + Ti TinyOT + + Short Keys Short keys h honest Additive shares 1 honest Eduardo Soria-Vazquez 14
The problem with short MACs Th π³ β 0,1 B π² β 0,1 B π Γ Triple π¦ ) π§ ) + π‘ ) , β¦ , π¦ B π§ B + π‘ B π‘ ) , β¦ , π‘ B ( π² , π³ , π²π³ ) π π β πΌ β + π π§ ) , β¦ , π§ B β {0,1} π¦ ) , β¦ , π¦ B β 0,1 β β 0,1 β π π¦ ) , β¦ , π π¦ B β 0,1 β π π¦ ) , β¦ , π π¦ B β 0,1 β π‘ ) , β¦ , π‘ B β π±( 0,1 ) Only π β possible values for π¬ ! β as small as 1 ! Eduardo Soria-Vazquez 15
οΏ½ Leakage gets worseβ¦ β¦ π π π π π π π Γ Triple π Γ Triple , . . . , ( π² , π³ , π²π³ ) ( π² , π³ , π²π³ ) π π π β πΌ β ) + π π π π π β πΌ β X + π π π π π + β― + π π = S πΌ β π + π π β VW) ..X Eduardo Soria-Vazquez 16
Wha What is s Ti TinyKeys? ? [HO HOSS18] 18] β’ New tool for large-scale MPC (more honesty β s horter keys). β’ Base security on the concatenation of honest partiesβ keys. [BM17] [Kir11] [Saa07] [FS09] [BLN+09] β’ Security reduces to Regular Syndrome Decoding : [BJMM12] [MO15] [BLP08] β’ Not much easier than Syndrome Decoding β LPN. [MMT11] [CJ04] [NCB11] [MS09] [BLP11] β’ Params: # products π , key length β , # honest parties β . β’ Statistically hard for small π /large β . Eduardo Soria-Vazquez 17
Wha Pr Problems with Ti What is s Ti TinyKeys? TinyKeys [H ? [HO HOSS18] [HOSS18] 18] 18] β’ New tool for large-scale MPC (more honesty β s horter keys). β’ Base security on the concatenation of honest partiesβ keys. β’ Security reduces to Regular Syndrome Decoding : β’ Not much easier than syndrome decoding β LPN. β’ Params: # products π , key length β , # honest parties β . β’ Params: # products π , key length β , # honest parties β . β’ Statistically hard for small π /large β . Eduardo Soria-Vazquez 18
Problems with Ti Pr TinyKeys [H [HOSS18] 18] β’ Params: # products π , key length β , # honest parties β . β’ A single β can only be used to produce r triples! β’ Solution: Use different ones for every r triples: β [^,B) , β [B,+B) , β¦ Secure method for switching: β ^,B β β , β [B,+B) β β , β¦ β’ Best bucketing technique cannot apply (mult. overhead: πΆ ). β’ Solution: Use previous bucketing techniques (mult. overhead: B + ). β’ Still worth! πΆ β {3,4} in practice. Eduardo Soria-Vazquez 19
Commu Co mmunication comp mplexity y (400 (400 part rties) s) 350 300 250 Comm. (megabits/AND triple) Standard [WRK17] 200 [WRK17] + Committee 150 This Work 100 50 0 1 10 20 30 40 50 60 70 80 90 100 110 120 # honest parties Eduardo Soria-Vazquez 20
Co Conclusi sion and fu future directions β’ First extension of TinyKeys [HOSS18] to the active setting . β’ Take-away: Large-scale requires different/new techniques (bucketing, MACs). β’ Improved TinyOT with 30+ parties. β’ Up to 18x in communication (vs multiparty [WRK17] + committees). β’ Significant improvements ( 2-6x ) with as little as 10% honest parties. Future challenges: β’ Optimize TinyKeys: More cryptanalysis (conservative parameters atm). β’ Adaptive adversaries? Actively secure TinyKeys-BMR [HOSS18]? Eduardo Soria-Vazquez 21
Th Thank you! Questions? Paper: https://ia.cr/2018/843 [Full version] Concretely Efficient Large-Scale MPC with Active Security (or, TinyKeys for TinyOT) Carmit Hazay, Emmanuela Orsini, Peter Scholl and Eduardo Soria-Vazquez Mail: eduardo.soria-vazquez@bristol.ac.uk Eduardo Soria-Vazquez 22
Recommend
More recommend