concretely efficient la large sc scale m mpc wi with th
play

Concretely Efficient La Large-Sc Scale M MPC wi with th Acti - PowerPoint PPT Presentation

Concretely Efficient La Large-Sc Scale M MPC wi with th Acti tive Securi rity ty (or (or, Ti TinyKeys fo for Ti TinyOT) ) Carmit Hazay, Emmanuela Orsini, Peter Scholl and Eduardo Soria-Vazquez La Large-Sc Scale MP MPC Current


  1. Concretely Efficient La Large-Sc Scale M MPC wi with th Acti tive Securi rity ty (or (or, Ti TinyKeys fo for Ti TinyOT) ) Carmit Hazay, Emmanuela Orsini, Peter Scholl and Eduardo Soria-Vazquez

  2. La Large-Sc Scale MP MPC Current practical MPC doesn’t Growing number of users want to compute privately and jointly . scale well for large numbers of parties. Outsource? Fixed set Sample a of parties committee 1229 farmers +6000 relays (auction) (statistics) Eduardo Soria-Vazquez 2

  3. MP MPC C setting in this talk Main focus: β€’ Concrete efficiency for large numbers of parties Preprocessing (e.g. π‘œ in 10s, 100s). Adversary: corr. β€’ Static, active . rand. β€’ Dishonest majority , but not full threshold ! a b β€’ Assume β„Ž > 1 honest parties to increase efficiency. Online Model of Computation: c d β€’ Boolean circuits. β€’ Preprocessing phase. Eduardo Soria-Vazquez 3

  4. Ou Our resu sults New TinyOT-style protocol (actively secure, dishonest majority) exploiting more honest parties: v Up to 34x less communication compared with [WRK17]’s TinyOT with π‘œ βˆ’ 1 corruptions. v Up to 18x less communication compared with [WRK17]’s TinyOT mixed with committees ( β„Ž > 1 honest parties). v Good improvements (2-6x less comm) with just 10% honest parties . Eduardo Soria-Vazquez 4

  5. Ho How to to scale ale Tin inyOT

  6. Th The Ti TinyOT pr protocol [NNOB12] β€’ Based on additive secret sharing: 𝑦 = 𝑦 ) + 𝑦 + . β€’ Multiplications computed using Beaver’s triples: ( 𝐲 , 𝐳 , 𝐲𝐳 ) . β€’ Active security: Information-theoretic MACs (authenticated bits). Eduardo Soria-Vazquez 6

  7. Th The Ti TinyOT pr protocol [NNOB12] β€’ Based on additive secret sharing: 𝑦 = 𝑦 ) + 𝑦 + . β€’ Multiplications computed using Beaver’s triples: ( 𝐲 , 𝐳 , 𝐲𝐳 ) . β€’ Active security: Information-theoretic MACs (authenticated bits). 𝑛[𝑦 ) ] = 𝑙[𝑦 ) ] + 𝑦 ) Β· βˆ† 𝑦 ) , 𝑛 𝑦 ) 𝑦 ) ∈ {0,1} βˆ†, 𝑙 𝑦 ) ∈ 0,1 )+4 𝑛 𝑦 ) ∈ 0,1 )+4 Eduardo Soria-Vazquez 7

  8. Th The Ti TinyOT pr protocol [NNOB12] β€’ Based on additive secret sharing: 𝑦 = 𝑦 ) + 𝑦 + . β€’ Multiplications computed using Beaver’s triples: ( 𝐲 , 𝐳 , 𝐲𝐳 ) . β€’ Active security: Information-theoretic MACs (authenticated bits). 𝑛[𝑦 + ] = 𝑙[𝑦 + ] + 𝑦 + Β· βˆ† 𝑦 + , 𝑛 𝑦 + 𝑦 + ∈ {0,1} βˆ†, 𝑙 𝑦 + ∈ 0,1 )+4 𝑛 𝑦 + ∈ 0,1 )+4 Eduardo Soria-Vazquez 8

  9. Mu Multi-Pa Party Ti TinyOT Eduardo Soria-Vazquez 9

  10. Th The Ti TinyOT pr protocol [NNOB12] β€’ Based on additive secret sharing: 𝑦 = 𝑦 ) + 𝑦 + . β€’ Multiplications computed using Beaver’s triples: ( 𝐲 , 𝐳 , 𝐲𝐳 ) . β€’ Active security: Information-theoretic MACs (authenticated bits). 𝑛[𝑦 ) ] = 𝑙[𝑦 ) ] + 𝑦 ) Β· βˆ† 𝑦 ) + 1, 𝑛 𝑦 ) + βˆ† 𝑦 ) ∈ {0,1} βˆ†, 𝑙 𝑦 ) ∈ 0,1 )+4 𝑛 𝑦 ) ∈ 0,1 )+4 Eduardo Soria-Vazquez 10

  11. Th The Ti TinyOT pr protocol [NNOB12] β€’ Based on additive secret sharing: 𝑦 = 𝑦 ) + 𝑦 + . β€’ Multiplications computed using Beaver’s triples: ( 𝐲 , 𝐳 , 𝐲𝐳 ) . β€’ Active security: Information-theoretic MACs (authenticated bits). 𝑛[𝑦 ) ] = 𝑙[𝑦 ) ] + 𝑦 ) Β· βˆ† 𝑛 𝑦 ) + βˆ† 𝑦 ) + 1, 𝑦 ) ∈ {0,1} βˆ†, 𝑙 𝑦 ) ∈ 0,1 β„“ β„“ β‰ͺ 128 𝑛 𝑦 ) ∈ 0,1 β„“ Eduardo Soria-Vazquez 11

  12. Th The Ti TinyOT pr protocol [NNOB12] β€’ Based on additive secret sharing: 𝑦 = 𝑦 ) + 𝑦 + . β€’ Multiplications computed using Beaver’s triples: ( 𝐲 , 𝐳 , 𝐲𝐳 ) . β€’ Active security: Information-theoretic MACs (authenticated bits). 𝑛[𝑦 ) ] = 𝑙[𝑦 ) ] + 𝑦 ) Β· βˆ† βˆ†, 𝑙 𝑦 ) ∈ 0,1 β„“ β„“ β‰ͺ 128 𝑦 ) ∈ {0,1} βˆ†, 𝑙 𝑦 ) ∈ 0,1 β„“ β„“ Β· β„Ž β‰₯ 𝑑 𝑛 𝑦 ) ∈ 0,1 β„“ Eduardo Soria-Vazquez 12

  13. Co Commi mmittees s + + Ti TinyOT + + Short Keys Eduardo Soria-Vazquez 13

  14. Co Commi mmittees s + + Ti TinyOT + + Short Keys Short keys h honest Additive shares 1 honest Eduardo Soria-Vazquez 14

  15. The problem with short MACs Th 𝐳 ∈ 0,1 B 𝐲 ∈ 0,1 B 𝑠× Triple 𝑦 ) 𝑧 ) + 𝑑 ) , … , 𝑦 B 𝑧 B + 𝑑 B 𝑑 ) , … , 𝑑 B ( 𝐲 , 𝐳 , 𝐲𝐳 ) 𝑀 𝒛 β‰ˆ 𝐼 βˆ† + 𝒛 𝑧 ) , … , 𝑧 B ∈ {0,1} 𝑦 ) , … , 𝑦 B ∈ 0,1 βˆ† ∈ 0,1 β„“ 𝑛 𝑦 ) , … , 𝑛 𝑦 B ∈ 0,1 β„“ 𝑙 𝑦 ) , … , 𝑙 𝑦 B ∈ 0,1 β„“ 𝑑 ) , … , 𝑑 B ∈ 𝒱( 0,1 ) Only πŸ‘ β„“ possible values for 𝚬 ! β„“ as small as 1 ! Eduardo Soria-Vazquez 15

  16. οΏ½ Leakage gets worse… … 𝒛 𝟐 𝒛 π’Š π’š π’š 𝑠× Triple 𝑠× Triple , . . . , ( 𝐲 , 𝐳 , 𝐲𝐳 ) ( 𝐲 , 𝐳 , 𝐲𝐳 ) 𝑀 𝒛 𝟐 β‰ˆ 𝐼 βˆ† ) + 𝒛 𝟐 𝑀 𝒛 π’Š β‰ˆ 𝐼 βˆ† X + 𝒛 π’Š 𝑀 𝒛 𝟐 + β‹― + 𝒛 π’Š = S 𝐼 βˆ† 𝒋 + 𝒛 𝒋 β‰ˆ VW) ..X Eduardo Soria-Vazquez 16

  17. Wha What is s Ti TinyKeys? ? [HO HOSS18] 18] β€’ New tool for large-scale MPC (more honesty β‡’ s horter keys). β€’ Base security on the concatenation of honest parties’ keys. [BM17] [Kir11] [Saa07] [FS09] [BLN+09] β€’ Security reduces to Regular Syndrome Decoding : [BJMM12] [MO15] [BLP08] β€’ Not much easier than Syndrome Decoding ⇔ LPN. [MMT11] [CJ04] [NCB11] [MS09] [BLP11] β€’ Params: # products 𝑠 , key length β„“ , # honest parties β„Ž . β€’ Statistically hard for small 𝑠 /large β„Ž . Eduardo Soria-Vazquez 17

  18. Wha Pr Problems with Ti What is s Ti TinyKeys? TinyKeys [H ? [HO HOSS18] [HOSS18] 18] 18] β€’ New tool for large-scale MPC (more honesty β‡’ s horter keys). β€’ Base security on the concatenation of honest parties’ keys. β€’ Security reduces to Regular Syndrome Decoding : β€’ Not much easier than syndrome decoding ⇔ LPN. β€’ Params: # products 𝑠 , key length β„“ , # honest parties β„Ž . β€’ Params: # products 𝑠 , key length β„“ , # honest parties β„Ž . β€’ Statistically hard for small 𝑠 /large β„Ž . Eduardo Soria-Vazquez 18

  19. Problems with Ti Pr TinyKeys [H [HOSS18] 18] β€’ Params: # products 𝒔 , key length β„“ , # honest parties β„Ž . β€’ A single βˆ† can only be used to produce r triples! β€’ Solution: Use different ones for every r triples: βˆ† [^,B) , βˆ† [B,+B) , … Secure method for switching: βˆ† ^,B β†’ βˆ† , βˆ† [B,+B) β†’ βˆ† , … β€’ Best bucketing technique cannot apply (mult. overhead: 𝐢 ). β€’ Solution: Use previous bucketing techniques (mult. overhead: B + ). β€’ Still worth! 𝐢 ∈ {3,4} in practice. Eduardo Soria-Vazquez 19

  20. Commu Co mmunication comp mplexity y (400 (400 part rties) s) 350 300 250 Comm. (megabits/AND triple) Standard [WRK17] 200 [WRK17] + Committee 150 This Work 100 50 0 1 10 20 30 40 50 60 70 80 90 100 110 120 # honest parties Eduardo Soria-Vazquez 20

  21. Co Conclusi sion and fu future directions β€’ First extension of TinyKeys [HOSS18] to the active setting . β€’ Take-away: Large-scale requires different/new techniques (bucketing, MACs). β€’ Improved TinyOT with 30+ parties. β€’ Up to 18x in communication (vs multiparty [WRK17] + committees). β€’ Significant improvements ( 2-6x ) with as little as 10% honest parties. Future challenges: β€’ Optimize TinyKeys: More cryptanalysis (conservative parameters atm). β€’ Adaptive adversaries? Actively secure TinyKeys-BMR [HOSS18]? Eduardo Soria-Vazquez 21

  22. Th Thank you! Questions? Paper: https://ia.cr/2018/843 [Full version] Concretely Efficient Large-Scale MPC with Active Security (or, TinyKeys for TinyOT) Carmit Hazay, Emmanuela Orsini, Peter Scholl and Eduardo Soria-Vazquez Mail: eduardo.soria-vazquez@bristol.ac.uk Eduardo Soria-Vazquez 22

Recommend


More recommend