computing supersingular isogenies on kummer surfaces
play

Computing supersingular isogenies on Kummer surfaces Craig Costello - PowerPoint PPT Presentation

Computing supersingular isogenies on Kummer surfaces Craig Costello ASIACRYPT December 6, 2018 Brisbane, Australia ECC vs. post-quantum ECC W. Castryck (GIF): https://www.esat.kuleuven.be/cosic/?p=7404 Alice 2 " -isogenies, Bob 3 $


  1. Computing supersingular isogenies on Kummer surfaces Craig Costello ASIACRYPT December 6, 2018 Brisbane, Australia

  2. ECC vs. post-quantum ECC W. Castryck (GIF): https://www.esat.kuleuven.be/cosic/?p=7404

  3. Alice 2 " -isogenies, Bob 3 $ -isogenies W. Castryck (GIF): https://www.esat.kuleuven.be/cosic/?p=7404

  4. In a nutshell: 𝐹(𝔾 ( ) )

  5. In a nutshell: 𝐾 , (𝔾 ( )

  6. In a nutshell: 𝐿(𝔾 ( )

  7. Why go hyperelliptic? 𝐹 ∢ 𝑧 1 = 𝑦 4 + β‹― 𝐷: 𝑧 1 = 𝑦 9 + β‹― #𝐹 𝔾 < β‰ˆ #𝐷 𝔾 < 𝐻 β‰ˆ 𝐷×𝐷 𝐻 = 𝐹 𝐻 = #𝐷 1 𝐻 = #𝐹

  8. Why go Kummer? 𝐾(𝔾 ( ) 𝐿(𝔾 ( ) = 𝐾(𝔾 ( )/⟨±1⟩ 72 equations in β„™ @A 1 equation in β„™ 4 β€’ Genus 2 analogue of elliptic curve 𝑦 -line β€’ Extremely efficient arithmetic

  9. … a few of my favourite things…

  10. From elliptic to hyperelliptic Consider 𝐹/𝐿: 𝑧 1 = 𝑦 4 + 1 𝐷/𝐿: 𝑧 1 = 𝑦 9 + 1 Obvious map πœ• ∢ 𝐷 𝐿 β†’ 𝐹 𝐿 𝑦, 𝑧 ↦ (𝑦 1 , 𝑧) But what about πœ• K@ ∢ 𝐹 𝐿 β†’ 𝐷(? ) … 1: 2: Points on 𝐹 are group elements, points on 𝐷 are not… 3: Actually want map 𝐹 β†’ 𝐾 , , but dim 𝐹 = 1 while dim 𝐾 , = 2 … Want general πœ•, πœ• K@ between 𝑧 1 = 𝑦 4 + 𝐡𝑦 1 + 𝑦 to 𝑧 1 = 𝑦 9 + 𝐡𝑦 Q + 𝑦 1 ??? 4:

  11. Proposition 1 𝔾 ( ) = 𝔾 ( (𝑗) with 𝑗 1 + 1 = 0 𝐹/𝔾 ( ) : 𝑧 1 = 𝑦 𝑦 βˆ’ 𝛽 𝑦 βˆ’ 1/𝛽 𝛽 = 𝛽 X + 𝛽 @ 𝑗 with 𝛽 X , 𝛽 @ ∈ 𝔾 ( 𝐷/𝔾 ( : 𝑧 1 = (𝑦 1 + 𝑛𝑦 βˆ’ 1) 𝑦 1 βˆ’ 𝑛𝑦 βˆ’ 1 𝑦 1 βˆ’ π‘›π‘œπ‘¦ βˆ’ 1 ) ]Z \ ) K@) 1Z [ (Z [ 𝑛 = Z \ , π‘œ = ) ]@) both in 𝔾 ( (Z [ ]Z \ Then Res 𝔾 a) /𝔾 a (𝐹) is (2,2) -isogenous to 𝐾 , (𝔾 ( ) ker(πœƒ) β‰… ker πœƒΜ‚ β‰… β„€ 1 Γ—β„€ 1 πœƒ πœƒ πœƒ ∘ πœƒΜ‚ = [2] Or, pictorially, πœƒΜ‚

  12. Unpacking Proposition 1 Weil restriction turns 1 equation over 𝔾 ( ) into two equations over 𝔾 ( β€’ Simple linear transform of 𝐹/𝔾 ( ) : 𝑧 1 = 𝑔 𝑦 = 𝑦 4 + 𝐡𝑦 1 + 𝑦 to β€’ πœ” l/𝔾 ( ) : 𝑧 1 = 𝑕(𝑦) such that 𝐷/𝔾 ( ) : 𝑧 1 = 𝑕(𝑦 1 ) is non-singular 𝐹 Pullback πœ• βˆ— of πœ• ∢ 𝑦, 𝑧 ↦ (𝑦 1 , 𝑧) gives 2 points in 𝐷 𝔾 ( o , β€’ 𝜍 but composition with Abel-Jacobi map bring these to 𝐾 , (𝔾 ( ) ) Need to go from 𝐾 , (𝔾 ( ) ) to 𝐾 , (𝔾 ( ) ; cue good old Trace map, β€’ 𝜐 t 𝜐: 𝑄 ↦ r 𝜏(𝑄) u∈vwx(𝔾 a) /𝔾 a ) πœƒ ∢ Res 𝔾 a) /𝔾 a (𝐹) β†’ 𝐾 , (𝔾 ( ) , 𝑄 ↦ (𝜐 ∘ 𝜍 ∘ πœ”)(𝑄)

  13. Matching 2 -kernels in 𝔾 ( ) with (2,2) -kernels in 𝔾 ( 𝐹 β‰… β„€ ((]@) Γ—β„€ ((]@) 𝐾 , β‰… β„€ ((]@)/1 Γ—β„€ ((]@)/1 Γ—β„€ 1 Γ—β„€ 1 𝐹 2 β‰… β„€ 1 Γ—β„€ 1 𝐾 , 2 β‰… β„€ 1 Γ—β„€ 1 Γ—β„€ 1 Γ—β„€ 1 𝑃 (0,0) β€’ Fifteen (2,2) -kernels in 𝐾 , 𝔾 ( . Number of ways to split 𝐷 ’s sextic into three quadratic factors. ~ ↔ { 𝛽, 0 , 1/𝛽, 0 } mma 2 : identifies 𝑃 ↔ (0,0) and Ξ₯, Ξ₯ β€’ Le Lemma

  14. Richelot isogenies in genus 2 Elliptic curve isogenies are easy/explicit/fast, thanks to VΓ©lu. But beyond elliptic curves, far from true! β€’ 2,2 -isogenies in genus 2 are exception, thanks to work beginning with Richelot in 1836 β€’ Lessons learned from elliptic case: β€’ (1) easiest to derive explicitly when the kernel is 𝑃 , i.e. the kernel we don’t want! (2) when kernel is Ξ₯ , precompose with isomorphism 𝜊 β€š ∢ 𝐾 , β†’ 𝐾 ,Ζ’ Ξ₯ ↦ 𝑃 Ζ’ (3) 𝜊 β€š either requires a square root, or torsion β€œfrom above” (4) who cares about the full Jacobian group, let’s move the Kummer variety 𝜊 β€š β‰… 𝑃 𝜊 β€š (Ξ₯)

  15. Supersingular Kummer surfaces 1 ‑ˆ‰ : 𝐺 β‹… π‘Œ @ π‘Œ 1 π‘Œ 4 π‘Œ Q = π‘Œ @ 1 + π‘Œ 1 1 + π‘Œ 4 1 + π‘Œ Q 1 βˆ’ 𝐻 π‘Œ @ + π‘Œ 1 𝐿 β€ž,…,† π‘Œ 4 + π‘Œ Q βˆ’ 𝐼 π‘Œ @ π‘Œ 1 + π‘Œ 4 π‘Œ Q Surface constants 𝐺, 𝐻, 𝐼 ∈ 𝔾 ( Points π‘Œ @ : π‘Œ 1 : π‘Œ 4 : π‘Œ Q ∈ β„™ 4 (𝔾 ( ) Theta constants 𝜈 @ : 𝜈 1 : 1: 1 ∼ (πœ‡πœˆ @ : πœ‡πœˆ 1 : πœ‡: πœ‡) Arithmetic constants 𝜌 @ : 𝜌 1 : 𝜌 4 : 𝜌 Q ; functions of 𝜈 @ , 𝜈 1 1 : β„“ 1 1 : β„“ 4 1 : β„“ Q 1 ) 𝑇: β„“ @ : β„“ 1 : β„“ 4 : β„“ Q ↦ (β„“ @ 𝐷: β„“ @ : β„“ 1 : β„“ 4 : β„“ Q ↦ (𝜌 @ β„“ @ : 𝜌 1 β„“ 1 : 𝜌 4 β„“ 4 : 𝜌 Q β„“ Q ) 𝐼: β„“ @ : β„“ 1 : β„“ 4 : β„“ Q ↦ (β„“ @ + β„“ 1 + β„“ 4 + β„“ Q : β„“ @ +β„“ 1 βˆ’ β„“ 4 βˆ’ β„“ Q : β„“ @ βˆ’ β„“ 1 + β„“ 4 βˆ’ β„“ Q : β„“ @ βˆ’ β„“ 1 βˆ’ β„“ 4 + β„“ Q ) ˜ ∘ 𝐼 ∘ 𝑇 ∘ 𝐷 ∘ 𝐼)(𝑄) Doubling 2 ” ‒–— : 𝑄 ↦ (𝑇 ∘ 𝐷 𝑃 2-isogeny (splitting [2] ) πœ’ Ε‘ : 𝑄 ↦ (𝑇 ∘ 𝐷 ∘ 𝐼)(𝑄)

  16. Kummer isogenies for non-trivial kernels ~} . Write 𝐼 𝑄 = 𝑄 Ζ’ : 𝑄 1 Ζ’ : 𝑄 4 Ζ’ : 𝑄 Ζ’ 𝑄 point of order 2 on 𝐿 corresponding to G ∈ {Ξ₯, Ξ₯ β€’ @ Q Ζ’ : 𝑅 1 Ζ’ : 𝑅 4 Ζ’ : 𝑅 Q Ζ’ 𝑅 point of order 4 on 𝐿 such that 2 𝑅 = 𝑄 . Write 𝐼 𝑅 = 𝑅 @ β€’ Ζ’ π‘Œ @ : 𝜌 1 Ζ’ π‘Œ 1 : 𝜌 4 Ζ’ π‘Œ 4 : 𝜌 Q Ζ’ π‘Œ Q Define 𝐷 β€’,ΕΎ ∢ π‘Œ @ : π‘Œ 1 : π‘Œ 4 : π‘Œ Q ↦ 𝜌 @ β€’ Ζ’ 𝑅 Q Ζ’ : 𝑄 Ζ’ 𝑅 Q Ζ’ : 𝑄 1 Ζ’ 𝑅 @ Ζ’ : 𝑄 1 Ζ’ 𝑅 @ Ζ’ where 𝜌 @ : 𝜌 1 : 𝜌 4 : 𝜌 Q = 𝑄 1 @ Then πœ’ ΕΎ : 𝐿 ΕΈ< β†’ 𝐿 ΕΈ< /𝐻 , 𝑄 ↦ (𝑇 ∘ 𝐼 ∘ 𝐷 β€’,ΕΎ ∘ 𝐼)(𝑄) 4M+4S+16A β€’

  17. Implications Theta constants map to theta constants: no special map needed to find image surface β€’ Comparison in Table/paper very conservative. Kummer will win in aggressive impl.: β€’ ) (scalars 4 x larger) - Recall Kummer over 𝔾 1 \)Β‘ K@ almost as fast as FourQ over 𝔾 1 \)Β‘ K@ - Recall that β€œdoubling” and β€œ2-isog. point” are bottlenecks in optimal tree strategy - Pushing points through 2 β„“ for small β„“ likely to be better on Kummer, don’t need to compute all intermediate surface constants

  18. Related future work To use this right now, Alice need to map back-and-forth using πœƒ and πœƒΜ‚ . Certainly not a β€’ deal-breaker! Thus, , this is a call for r skilled implementers! But ideally we want Bob to be able to use the Kummer, too! Then uncompressed β€’ SIDH/SIKE can be defined as Kummer everywhere! Thus, , this is a call for r fast (πŸ’, πŸ’) -is isogenie ies on fas ast Kummers! Going further, general isogenies in Montgomery elliptic case have a nice explicit form (see β€’ [C-Hisil, AsiaCrypt’17] and [Renes,PQCrypto’18]). Thus, r fast (β„“, β„“) - , this is a call for is isogenie ies on fas ast Kummers! Gut feeling is that there’s a better way to write down supersingular Kummers, and their β€’ arithmetic. Thus, , this is a call for r smart rt geometers!

  19. Cheers! https://eprint.iacr.org/2018/850.pdf https://www.microsoft.com/en-us/download/details.aspx?id=57309

Recommend


More recommend