composite heavy vector triples in the atlas di boson
play

Composite heavy vector triples in the ATLAS di-boson excess and at - PowerPoint PPT Presentation

Gearing up for LHC 13, GGI, 18 September 2015 Composite heavy vector triples in the ATLAS di-boson excess and at future colliders Andrea Thamm JGU Mainz in collaboration with R. Torre and A. Wulzer based on arXiv: 1506.08688 and 1502.01701


  1. Gearing up for LHC 13, GGI, 18 September 2015 Composite heavy vector triples in the ATLAS di-boson excess and at future colliders Andrea Thamm 
 JGU Mainz in collaboration with R. Torre and A. Wulzer based on arXiv: 1506.08688 and 1502.01701

  2. Di-boson excess? W and Z tagged dijets W and Z semi-leptonic W and Z tagged dijets CMS, arXiv:1405.1994 CMS, arXiv:1405.3447 ATLAS, arXiv:1506.00962 HV W and Z semi-leptonic W and Z tagged dijets CMS, arXiv:1405.3447 ATLAS, arXiv:1506.00962 CMS, arXiv:1506.01443

  3. Di-boson excess? 3 . 4 σ local significance 2 . 5 σ global significance [ATLAS, arXiv:1506.00962]

  4. Tagging efficiencies • W-fat jet: 69.4 GeV < m < 95.4 GeV • Z-fat jet: 79.8 GeV < m < 105.8 GeV [Allanach, Gripaios, Sutherland: arXiv:1507.01638] [ATLAS, arXiv:1506.00962] • efficiency of jet invariant mass cuts

  5. Excess events n obs = 15 n obs = 20 n exp = 13 . 0 n exp = 10 . 8 n exc = 7 . 0 n exc = 4 . 2 [ATLAS, arXiv:1506.00962] S W Z = 7 . 0 +3 . 8 − 2 . 6 Big statistical uncertainties: S W W = 4 . 2 +3 . 2 − 2 . 0 S ZZ = 6 . 4 +3 . 6 − 2 . 4 combined fit only by ATLAS 
 n obs = 10 lack information on the correlation of the big systematic n exp = 3 . 6 uncertainties n exc = 6 . 4 We extract the signal CS from a single channel and compare with the others

  6. Signal cross section BR W Z → had ≈ 0 . 47 n obs = 20 n exp = 13 . 0 n exc = 7 . 0 ( σ × BR) ATLAS 3 . 4 events = 3 . 17 fb BR W Z → had S W Z = 7 . 0 +3 . 8 σ W 0 × BR W 0 → W Z = 6 . 5 +5 . 1 − 4 . 1 fb − 2 . 6

  7. Heavy vector triples

  8. Heavy vector triples • among the most well motivated particles • appear in composite Higgs models but also in weakly coupled theories • associated to the EW gauge symmetry • consider a 3 of SU (2) L

  9. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a µ V µ a � V + , V − , V 0 � V V = L V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Coupling to SM Vectors Coupling to SM fermions J µ a X f L γ µ τ a f L = F f W L , Z L , h f ∼ g ∼ g V c H × g c F g V V µ W µ V µ ¯ f W L , Z L , h c F V · J F c l V · J l + c q V · J q + c 3 V · J 3 →

  10. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a µ V µ a � V + , V − , V 0 � V V = L V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Coupling to SM Vectors Coupling to SM fermions J µ a X f L γ µ τ a f L = F f W L , Z L , h f ∼ g 2 c F ∼ g V c H g V V µ V µ ¯ f W L , Z L , h c F V · J F c l V · J l + c q V · J q + c 3 V · J 3 →

  11. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a µ V µ a � V + , V − , V 0 � V V = L V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν • Couplings among vectors • do not contribute to V decays • do not contribute to single production • only effects through (usually small) VW mixing • irrelevant for phenomenology only need ( c H , c F )

  12. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a µ V µ a � V + , V − , V 0 � V V = L V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Weakly coupled model Strongly coupled model typical strength of V interactions g V g V ∼ g ∼ 1 1 < g V ≤ 4 π dimensionless coefficients c i c H ∼ − g 2 /g 2 c F ∼ 1 c H ∼ c F ∼ 1 and V

  13. Production rates • DY and VBF production � � 4 π 2 Γ V → ij dL ij 48 π 2 dL W L i W L j Γ V → W L i W L j � � X X σ DY = � σ V BF = � M V d ˆ s 3 � M V d ˆ s � � i,j ∈ p s = M 2 � ˆ i,j ∈ p s = M 2 ˆ V V model 
 model 
 dependent independent • can compute production rates analytically! • easily rescale to different points in parameter space quark initial state vector boson initial state 10 4 10 0 10 - 1 + Z L H V + L 10 3 W L u i d j H V + L - H V 0 L 10 - 2 u i u j H V 0 L W L + W L 10 2 10 - 3 W L - Z L H V - L d i d j H V 0 L 10 1 10 - 4 d i u j H V - L 10 0 10 - 5 ` @ pb D ` @ pb D 10 - 1 10 - 6 dL ê d s dL ê d s 10 - 7 10 - 2 10 - 8 10 - 3 10 - 9 10 - 4 8 TeV 8 TeV 10 - 10 10 - 5 10 - 11 10 - 6 ` L 2 L CTEQ6L1 H m 2 = s 10 - 12 CTEQ6L1 H m 2 = M W 10 - 13 10 - 7 0 1 2 3 4 5 0 1 2 3 4 5 ` = M V @ TeV D ` = M V @ TeV D s s

  14. Decay widths • relevant decay channels: di-lepton, di-quark, di-boson ◆ 2 M V ✓ g 2 c F 0 ' 2 Γ V 0 → ff ' N c [ f ] Γ V ± → ff 96 π , g V ' g 2 V c 2 H M V 1 + O ( ζ 2 ) ⇥ ⇤ Γ V 0 → W + Γ V ± → W ± ' L W − L Z L 192 π L ' g 2 V c 2 H M V ⇥ 1 + O ( ζ 2 ) ⇤ Γ V 0 → Z L h Γ V ± → W ± ' L h 192 π g 2 c F /g V ' g 2 /g V g V c H ' � g V , è W + W - ll Zh 10 - 1 nn BR H V 0 Æ 2 X L uu bb Model B è tt dd 10 - 2 10 - 3 g V = 3 500 1000 1500 2000 2500 3000 3500 4000 M 0 @ GeV D

  15. LHC bounds V 0 Æ tt V ± Æ tb V 0 Æ ll V ± Æ l ± n V ± Æ W ± Z Æ 3 l ± n V ± Æ W ± Z Æ jj _ ' V 0 Æ WW Æ jj V 0 Æ WW Æ l n q q 10 4 V 0 Æ tt pp Æ V 0 pp Æ V + 10 3 CMS theoretically excluded B g V = 3 10 2 s H pp Æ V L @ pb D 10 1 10 0 10 - 1 10 - 2 10 - 3 similar bounds for ATLAS 10 - 4 0 1000 2000 3000 4000 M V @ GeV D • excluded for masses < 1.5 TeV , unconstrained for larger g V • di-boson most stringent • in excluded region , not reproduced G F m Z

  16. Heavy vector triples in the di-boson excess

  17. LHC bounds • experimental limits converted into plane ( M V , g V ) yellow: CMS analysis l + ν dark blue: CMS WZ → 3 l ν [Pappadopulo, Thamm, Torre, Wulzer, arXiv:1402.4431] light blue: CMS 5 WZ → jj black: bounds from EWPT theoretically Model B excluded 4 New Physics? g V 3 2 1 500 1000 1500 2000 2500 3000 3500 M V @ GeV D • similar exclusions at low , leptonic final state dominates g V • very different for larger coupling • weaker limits if decay to top partners open [Greco, Liu: arXiv:1410.2883] [Chala, Juknevich, Perez, Santiago :arXiv:1411.1771]

  18. LHC bounds yellow: CMS analysis l + ν dark blue: CMS • compare with weakly coupled vectors WZ → 3 l ν light blue: CMS WZ → jj black: bounds from EWPT Weakly coupled model Strongly coupled model 5 5 theoretically Model A Model B excluded 4 4 g V 3 g V 3 2 2 1 1 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500 M V @ GeV D M V @ GeV D • strongly coupled vectors have weaker bounds [Pappadopulo, Thamm, Torre, Wulzer, arXiv:1402.4431]

  19. HVT signal cross section • neutral and charged components contribute to the various selection regions S W Z = L × A × [( � × BR) V ± BR W Z → had ✏ W Z → W Z + ( � × BR) V 0 BR W W → had ✏ W W → W Z ] • Once we fix the mass there is only one parameter g V S W Z = 7 . 0 +3 . 8 − 2 . 6 [Thamm, Torre, Wulzer, arXiv:1506.08688] n obs = 20 n exp = 13 . 0 n exp = 7 . 0 S W W ∈ [2 . 2 , 10 . 3] S ZZ ∈ [1 . 4 , 6 . 6] S W W = 4 . 2 +3 . 2 S ZZ = 6 . 4 +3 . 6 − 2 . 0 − 2 . 4

  20. Compatibility with other searches b) a) c) σ × BR e ff ( WZ ) [pb] σ × BR e ff ( WZ ) [pb] σ × BR e ff ( ZZ ) [pb] σ x BR ( W' → WZ ) [ pb ] σ x BR ( W' → WZ ) [ pb ] σ x BR ( G → ZZ ) [ pb ] CMS leptonic Z → → → → → → σ σ σ σ σ σ CMS Fully hadronic ATLAS leptonic Z Resonance mass [ GeV ] Resonance mass [ TeV ] Resonance mass [ GeV ] e) f) d) σ × BR e ff ( WW ) [pb] σ × BR( V H ) [pb] σ × BR e ff ( WZ ) [pb] σ x BR ( Z' → WW ) [ pb ] σ x BR ( V' → HV ) [ pb ] σ x BR ( W' → WZ ) [ pb ] CMS leptonic W CMS HV combination → → → → → → → ATLAS leptonic W σ σ σ σ σ σ σ Resonance mass [ TeV ] Resonance mass [ GeV ] Resonance mass [ TeV ] Resonance mass [ GeV ] Thamm, Torre, Wulzer, arXiv:1506.08688

  21. Conclusion I • perfectly agrees with some channels • could maybe even explain some small excesses • maybe slight tension in other channels • maybe this is exactly what we expect?

  22. Heavy vector triples at future colliders

  23. Composite Higgs models at future colliders

Recommend


More recommend