complex fluids and soft materials a numerical perspective
play

Complex Fluids and Soft Materials: A Numerical Perspective - PowerPoint PPT Presentation

Complex Fluids and Soft Materials: A Numerical Perspective Bo Zhu MIT CSAIL boolzhu@csail.mit.edu Complex Physical Systems Geometry, Topology, Dynamics Material, Structure, Codimension,


  1. Complex Fluids and Soft Materials: A Numerical Perspective 复杂流体和柔性材料的计算方法 Bo Zhu 朱 博 MIT CSAIL boolzhu@csail.mit.edu

  2. Complex Physical Systems Geometry, Topology, Dynamics Material, Structure, Codimension, Transition Computer Graphics, Computational Fluid Dynamics, Computational Fabrication, 3D Printing, Biomedical Engineering, Robotics

  3. Flame

  4. 𝜍 ℎ 𝑣 ℎ − 𝐸 = 𝜍 𝑔 (𝑣 ℎ − 𝐸) 2 + 𝑞 𝑔 𝜍 ℎ 𝑣 ℎ − 𝐸 2 + 𝑞 ℎ = 𝜍 𝑔 𝑣 𝑔 − 𝐸

  5. Bubbles [ Fabian Oefner ]

  6. u u Two liquid jets collide with each other [John Bush Lab, MIT, 2004] [Bremond N and Villermaux E 2006] Impinging Jets

  7. [F. Savart 1833] [R. Buckingham and J. Bush 2001] http://www.phikwadraat.nl/ [John Bush Lab, MIT, 2004] Water Bell

  8. Waterbell

  9. Non-Newtonian Flow

  10. Viscosity matters!

  11. Math behind a pizza piece

  12. Paint Orchid

  13. Functional Soft Bodies

  14. What are they ? What are inside these flames? … Why do they happen? Why are splash crown-shaped? … How to make it? How to make a glider fly? …

  15. Adaptive/Reduced Discretizations Real-time Simulators Geometric Data Structures User Interface Numerical PDE Solvers Fabrication Meshing Large-Scale Optimization

  16. Adaptive/Reduced Discretizations Real-time Simulators Geometric Data Structures User Interface Numerical PDE Solvers Fabrication Meshing Large-Scale Optimization

  17. Large-scale Simulation for Film Visual Effects Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and Ron Fedkiw. A New Grid Structure for Domain Extension . ACM Trans. Graph. (SIGGRAPH 2013) , 32, 63.1-63.8.

  18. Domain Extension _ _ Sim time on a Sim time on a 3.1x 160x 6.1x 1x 12x uniform grid: far-field grid:

  19. New Grid Structure X-Axis: 4 δ x Layer 1: 4 Layer 2: (2, 3) Layer 3: (1, 1) 4 δ x Y-Axis: 2 δ x Layer 1: 6 2 δ x Layer 2: (1, 4) Layer 3: (0, 2) 2 δ x 2 δ x δ x δ x δ x δ x δ x δ x 2 δ x 4 δ x 2 δ x 2 δ x 2 δ x 2 δ x 2 δ x 4 δ x δ x δ x δ x δ x

  20. Two Grid Boxes • The interior box with the finest resolution to resolve fine details • The exterior box with gradually coarsened resolutions to enclose the entire fluid

  21. Fast Index Access 1D Array for Layer Information   m m m m    0   x x 0 0 i x x   0  i  I x ( ) I   2 m m 2 m m   i i 1   2 x

  22. Solving Incompressible Flow on Stretched Grid Cells • Use the volume weighted divergence to solve the Poisson equation for pressure on stretched cells in order to obtain a SPD system

  23. Adaptive/Reduced Discretizations Real-time Simulators Geometric Data Structures User Interface Numerical PDE Solvers Fabrication Meshing Large-Scale Optimization

  24. Computational Tools for Exploring Fundamental Sciences Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ron Fedkiw. Codimensional Surface Tension Flow on Simplicial Complexes . ACM Trans. Graph. (SIGGRAPH 2014 ). Bo Zhu, Minjae Lee, Ed Quigley, and Ron Fedkiw. Codimensional Non-Newtonian Fluids . ACM Trans. Graph. (SIGGRAPH 2015) . Wen Zheng, Bo Zhu, Byungmoon Kim, and Ron Fedkiw. A New Incompressibility Discretization for a Hybrid Particle MAC Grid Representation with Surface Tension . J. Comp. Phys., 280, 94-142, 2015.

  25. Anisotropic Thin Features

  26. Embed a Lagrangian mesh in a grid

  27. What will happen if the features get even thinner? Vanishingly thin?

  28. These phenomena are not rare… Membrane: Jets and sheets: Oefner’s photography Bush’s experiments, MIT Applied Math Lab fabianoefner.com

  29. Simplicial Complex A geometric structure that consists of points, segments, triangles, and tetrahedra surface tension, adhesion, gravity, etc.

  30. Discrete Geometric Analogues Codimension-0 Tetrahedra Codimension-1 Triangles Codimension-2 Segments Codimension-3 Points

  31. Reduced Geometry Film boundary (Rim) Film (and Rim) Film interior Filament boundary Filament Filament interior Droplet

  32. Codimensional Volume-Weighted Gradient • For all the simplexes incident to a particle:

  33. Discretized Poisson Equation • Poisson equation: • Volume weighted formula : Discretizing

  34. Surface Tension • Discretization: → → d r,n → l f,n d e,n → l f,n Film interior Filament Film boundary (Rim)

  35. Meshing Algorithm For each timestep //Volumetric meshing Tetrahedron edge/face flip Tetrahedron edge split Face to Edge Flip Edge Split Edge to Face Flip Skinny tetrahedron collapse Tetrahedron edge/face flip α //Thin film meshing Triangle edge split Face Split Edge Collapse Crumple Merge Triangle edge collapse Triangle edge flip Triangle crumple merge //Filament meshing Segment edge split Triangle Edge Flip Triangle Edge Split Triangle Edge Collapse Segment edge collapse //Topological merging/breaking Boundary vertex snap Thin triangle break Segment Edge Split Segment Edge Collapse Vertex Snap Thin segment break

  36. Example: Blowing Bubbles http://www.soapbubble.dk/

  37. [J Eggers and E Villermaux 2008]

  38. Example: Film Catenoid

  39. Example: Waterbell [F. Savart 1833] http://www.phikwadraat.nl/ [R. Buckingham and J. Bush 2001]

  40. Numerical Simulation of Non-Newtonian Fluids Bo Zhu, Minjae Lee, Ed Quigley, and Ron Fedkiw. Codimensional Non-Newtonian Fluids . ACM Trans. Graph. (SIGGRAPH 2015) .

  41. Different Material Models Paint: Shear Thinning Quicksand: Shear Thickening Mud: Bingham Plastic

  42. Variable Viscosity • Non-Newtonian flow: • Semi-Implicit viscosity force: Implicit part Explicit part • Volume weighted formula for the implicit part:

  43. Adaptive/Reduced Discretizations Real-time Simulators Geometric Data Structures User Interface Numerical PDE Solvers Fabrication Meshing Large-Scale Optimization

  44. An interactive system for cardiovascular surgeons

  45. Anisotropic thin pipes Reduced Graph

  46. Reduced Geometry • Hydraulics Q n =-MQ e MD e M T P n = Q n • Hydrodynamics N-S equations with Dirichlet Boundary

  47. Adaptive/Reduced Discretizations Real-time Simulators Geometric Data Structures User Interface Numerical PDE Solvers Fabrication Meshing Large-Scale Optimization

  48. Motivation: Direct Design v.s. Generative Design Generative Design Direct Design

  49. Topology Optimization

  50. Challenges Software: SIMP Topology Optimization Hardware: Object-1000 Plus • Up to 39.3 x 31.4 x 19.6 in. • Up to millions of elements • 600dpi (~40 microns) • Difficult to handle multiple materials • 5 trillion voxels

  51. Previous Work: Fabrication-Oriented Optimization [Musialski et.al. 2016] [Xu et.al. 2015] [Lu et.al. 2014] [Matinez et.al. 2016] [Schumacher et.al. 2015] [Panetta et.al. 2015]

  52. Topology Optimization [Langlois et.al. 2016] [Liang et.al. 2015] [Wu et.al. 2016] [Matinez et.al. 2015]

  53. Two-scale Topology Optimization Continuous Representation Continuous Optimization Design Goal Grip Force 𝑸𝒑𝒋𝒕𝒕𝒑𝒐 ′ 𝒕 𝑺𝒃𝒖𝒋𝒑 Base materials Young’s Modulus 𝑻𝒊𝒇𝒃𝒔 𝑵𝒑𝒆𝒗𝒎𝒗𝒕 Fabrication Material Property Space

  54. Two-scale Topology Optimization Continuous Representation Continuous Optimization Design Goal Grip Force 𝑸𝒑𝒋𝒕𝒕𝒑𝒐 ′ 𝒕 𝑺𝒃𝒖𝒋𝒑 Base materials Young’s Modulus 𝑻𝒊𝒇𝒃𝒔 𝑵𝒑𝒆𝒗𝒎𝒗𝒕 Fabrication Material Property Space Material Property Space

  55. Microstructure 𝑞 = 𝐹, 𝜉, 𝜈 𝑈 𝐐𝐩𝐣𝐭𝐭𝐩𝐨 Young’s 𝐓𝐢𝐟𝐛𝐬 Base materials 𝜉 𝜉 1 − 𝜉 𝐹 𝐹 𝐹 𝜉 1 − 𝜉 𝐹 𝐹 1 − 𝜉 𝐹 𝝉 = 𝑫𝝑 = 𝜈 𝜈 𝜈 Cubic Material

  56. Continuous Representation: Levelset 𝐐𝐩𝐣𝐭𝐭𝐩𝐨 Young’s 𝜚 𝑞 = 0 𝐓𝐢𝐟𝐛𝐬

  57. Expanding the Achievable Property Domain 𝐐𝐩𝐣𝐭𝐭𝐩𝐨 Young’s 𝜚 𝑞 = 0 𝐓𝐢𝐟𝐛𝐬 Stochastically-Ordered Sequential Monte Carlo

  58. Expanding the Achievable Property Domain 𝐐𝐩𝐣𝐭𝐭𝐩𝐨 Young’s 𝜚 𝑞 = 0 𝐓𝐢𝐟𝐛𝐬 Continuous Microstructure Optimization

  59. Lame parameters space 4D space 𝐐𝐩𝐣𝐭𝐭𝐩𝐨 𝜚 𝑞 = 0 Young’s 𝐓𝐢𝐟𝐛𝐬

  60. Two-scale Topology Optimization Continuous Optimization Continuous Representation Continuous Optimization Design Goal Grip Force 𝑸𝒑𝒋𝒕𝒕𝒑𝒐 ′ 𝒕 𝑺𝒃𝒖𝒋𝒑 Base materials Young’s Modulus 𝑻𝒊𝒇𝒃𝒔 𝑵𝒑𝒆𝒗𝒎𝒗𝒕 Fabrication Material Property Space

Recommend


More recommend