comparative advantage and optimal trade taxes
play

Comparative Advantage and Optimal Trade Taxes Arnaud Costinot - PowerPoint PPT Presentation

Comparative Advantage and Optimal Trade Taxes Arnaud Costinot (MIT), Dave Donaldson (MIT), Jonathan Vogel (Columbia) and Ivn Werning (MIT) June 2014 Motivation Two central questions... 1. Why do nations trade? 2. How should they


  1. Comparative Advantage and Optimal Trade Taxes Arnaud Costinot (MIT), Dave Donaldson (MIT), Jonathan Vogel (Columbia) and Iván Werning (MIT) June 2014

  2. Motivation • Two central questions... 1. Why do nations trade? 2. How should they conduct trade policy? • Theory of comparative advantage Influential answer to #1 v Virtually no impact on #2

  3. This Paper • Take canonical Ricardian model • simplest and oldest theory of CA • new workhorse model for theoretical and quantitative work • Explore relationship... CA Optimal Trade Taxes

  4. Main Result • Optimal trade taxes: 1. uniform across imported goods 2. monotone in CA across exported goods

  5. Main Result • Examples: export taxes zero import tariff + increasing in CA export subsidies Positive import tariff + decreasing in CA

  6. Simple Economics

  7. Simple Economics • More room to manipulate prices in comparative advantage sectors

  8. Simple Economics • More room to manipulate prices in comparative advantage sectors • New perspective on targeted industrial policy

  9. Simple Economics • More room to manipulate prices in comparative advantage sectors • New perspective on targeted industrial policy • larger subsidies for less competitive sectors not from desire to expand output ...

  10. Simple Economics • More room to manipulate prices in comparative advantage sectors • New perspective on targeted industrial policy • larger subsidies for less competitive sectors not from desire to expand output ... • ... but greater constraints to contract exports to exploit monopoly power

  11. Two Applications • Agriculture and Manufacturing examples • GT under optimal trade taxes are 20% and 33% larger than under no taxes • GT under under optimal uniform tariff are only 9% larger than under no taxes • Micro-level heterogeneity matters for design and gains from optimal trade policy

  12. Related Literature • Optimal Taxes in an Open Economy: • General results: Dixit (85), Bond (90) • Ricardo: Itoh Kiyono (87), Opp (09) • Lagrangian Methods: • Lagrangian methods in infinite dimensional space: AWA (06), Amador Bagwell (13) • Cell-problems: Everett (63), CLW (13)

  13. Roadmap • Basic Environment • Optimal Allocation • Optimal Trade Taxes • Applications

  14. Basic Environment

  15. A Ricardian Economy • Two countries: Home and Foreign • Labor endowments: and L ∗ L • CES utility over continuum of goods: Z u i ( c i ) di U ≡ i ⇣ ⌘. 1 − 1 / σ u i ( c i ) ≡ β i c − 1 (1 − 1 / σ ) i • Constant unit labor requirements: and a ∗ a i i • Home sets trade taxes and lump-sum transfer t ≡ ( t i ) T • Foreign is passive

  16. Competitive Equilibrium

  17. Competitive Equilibrium � ⇢Z � Z � c ∈ argmax ˜ u i (˜ c i ) di p i (1 + t i ) ˜ c i di ≤ wL + T c ≥ 0 � � i i

  18. Competitive Equilibrium � ⇢Z � Z � c ∈ argmax ˜ u i (˜ c i ) di p i (1 + t i ) ˜ c i di ≤ wL + T c ≥ 0 � � i i q i ∈ argmax ˜ q i ≥ 0 { p i (1 + t i ) ˜ q i − wa i ˜ q i }

  19. Competitive Equilibrium � ⇢Z � Z � c ∈ argmax ˜ u i (˜ c i ) di p i (1 + t i ) ˜ c i di ≤ wL + T c ≥ 0 � � i i q i ∈ argmax ˜ q i ≥ 0 { p i (1 + t i ) ˜ q i − wa i ˜ q i } Z T = p i t i ( c i − q i ) di i

  20. Competitive Equilibrium � ⇢Z � Z � c ∈ argmax ˜ u i (˜ c i ) di p i (1 + t i ) ˜ c i di ≤ wL + T c ≥ 0 � � i i q i ∈ argmax ˜ q i ≥ 0 { p i (1 + t i ) ˜ q i − wa i ˜ q i } Z T = p i t i ( c i − q i ) di i � ⇢Z � Z c ∗ ∈ argmax ˜ u ∗ � c i di ≤ w ∗ L ∗ i (˜ c i ) di p i ˜ c ≥ 0 � � i i

  21. Competitive Equilibrium � ⇢Z � Z � c ∈ argmax ˜ u i (˜ c i ) di p i (1 + t i ) ˜ c i di ≤ wL + T c ≥ 0 � � i i q i ∈ argmax ˜ q i ≥ 0 { p i (1 + t i ) ˜ q i − wa i ˜ q i } Z T = p i t i ( c i − q i ) di i � ⇢Z � Z c ∗ ∈ argmax ˜ u ∗ � c i di ≤ w ∗ L ∗ i (˜ c i ) di p i ˜ c ≥ 0 � � i i q ∗ q i − w ∗ a ∗ q i ≥ 0 { p i ˜ q i } i ∈ argmax ˜ i ˜

  22. Competitive Equilibrium � ⇢Z � Z � c ∈ argmax ˜ u i (˜ c i ) di p i (1 + t i ) ˜ c i di ≤ wL + T c ≥ 0 � � i i q i ∈ argmax ˜ q i ≥ 0 { p i (1 + t i ) ˜ q i − wa i ˜ q i } Z T = p i t i ( c i − q i ) di i � ⇢Z � Z c ∗ ∈ argmax ˜ u ∗ � c i di ≤ w ∗ L ∗ i (˜ c i ) di p i ˜ c ≥ 0 � � i i q ∗ q i − w ∗ a ∗ q i ≥ 0 { p i ˜ q i } i ∈ argmax ˜ i ˜ c i + c ∗ i = q i + q ∗ i ,

  23. Competitive Equilibrium � ⇢Z � Z � c ∈ argmax ˜ u i (˜ c i ) di p i (1 + t i ) ˜ c i di ≤ wL + T c ≥ 0 � � i i q i ∈ argmax ˜ q i ≥ 0 { p i (1 + t i ) ˜ q i − wa i ˜ q i } Z T = p i t i ( c i − q i ) di i � ⇢Z � Z c ∗ ∈ argmax ˜ u ∗ � c i di ≤ w ∗ L ∗ i (˜ c i ) di p i ˜ c ≥ 0 � � i i q ∗ q i − w ∗ a ∗ q i ≥ 0 { p i ˜ q i } i ∈ argmax ˜ i ˜ c i + c ∗ i = q i + q ∗ i , Z a i q i di = L , i

  24. Competitive Equilibrium � ⇢Z � Z � c ∈ argmax ˜ u i (˜ c i ) di p i (1 + t i ) ˜ c i di ≤ wL + T c ≥ 0 � � i i q i ∈ argmax ˜ q i ≥ 0 { p i (1 + t i ) ˜ q i − wa i ˜ q i } Z T = p i t i ( c i − q i ) di i � ⇢Z � Z c ∗ ∈ argmax ˜ u ∗ � c i di ≤ w ∗ L ∗ i (˜ c i ) di p i ˜ c ≥ 0 � � i i q ∗ q i − w ∗ a ∗ q i ≥ 0 { p i ˜ q i } i ∈ argmax ˜ i ˜ c i + c ∗ i = q i + q ∗ i , Z a i q i di = L , i Z a ∗ i q ∗ i di = L ∗ . i

  25. Government Problem

  26. Government Problem � ⇢Z � Z � c ∈ argmax ˜ u i (˜ c i ) di p i (1 + t i ) ˜ c i di ≤ wL + T c ≥ 0 � � i i q i ∈ argmax ˜ q i ≥ 0 { p i (1 + t i ) ˜ q i − wa i ˜ q i } Z T = p i t i ( c i − q i ) di i � ⇢Z � Z c ∗ ∈ argmax ˜ u ∗ � c i di ≤ w ∗ L ∗ i (˜ c i ) di p i ˜ c ≥ 0 � � i i q ∗ q i − w ∗ a ∗ q i ≥ 0 { p i ˜ q i } i ∈ argmax ˜ i ˜ c i + c ∗ i = q i + q ∗ i Z a i q i di = L , i Z a ∗ i q ∗ i di = L ∗ . i

  27. Government Problem U ( c ) max t, T, w, w ∗ , p, c, c ∗ , q, q ∗ s.t. � ⇢Z � Z � c ∈ argmax ˜ u i (˜ c i ) di p i (1 + t i ) ˜ c i di ≤ wL + T c ≥ 0 � � i i q i ∈ argmax ˜ q i ≥ 0 { p i (1 + t i ) ˜ q i − wa i ˜ q i } Z T = p i t i ( c i − q i ) di i � ⇢Z � Z c ∗ ∈ argmax ˜ u ∗ � c i di ≤ w ∗ L ∗ i (˜ c i ) di p i ˜ c ≥ 0 � � i i q ∗ q i − w ∗ a ∗ q i ≥ 0 { p i ˜ q i } i ∈ argmax ˜ i ˜ c i + c ∗ i = q i + q ∗ i Z a i q i di = L , i Z a ∗ i q ∗ i di = L ∗ . i

  28. Optimal Allocation

  29. Let us Relax • Primal approach (Baldwin 48, Dixit 85): No taxes, no competitive markets at home Domestic government directly controls domestic consumption, , and output, q c

  30. Planning Problem U ( c ) max t, T, w, w ∗ , p, c, c ∗ , q, q ∗ s.t. � ⇢Z � Z � c ∈ argmax ˜ u i (˜ c i ) di p i (1 + t i ) ˜ c i di ≤ wL + T c ≥ 0 � � i i q i ∈ argmax ˜ q i ≥ 0 { p i (1 + t i ) ˜ q i − wa i ˜ q i } Z T = p i t i ( c i − q i ) di i � ⇢Z � Z c ∗ ∈ argmax ˜ u ∗ � c i di ≤ w ∗ L ∗ i (˜ c i ) di p i ˜ c ≥ 0 � � i i q ∗ q i − w ∗ a ∗ q i ≥ 0 { p i ˜ q i } i ∈ argmax ˜ i ˜ c i + c ∗ i = q i + q ∗ i Z a i q i di = L , i Z a ∗ i q ∗ i di = L ∗ . i

  31. Planning Problem U ( c ) max t, T, w, w ∗ , p, c, c ∗ , q, q ∗ s.t. � ⇢Z � Z c ∗ ∈ argmax ˜ u ∗ � c i di ≤ w ∗ L ∗ i (˜ c i ) di p i ˜ c ≥ 0 � � i i q ∗ q i − w ∗ a ∗ q i ≥ 0 { p i ˜ q i } i ∈ argmax ˜ i ˜ c i + c ∗ i = q i + q ∗ i Z a i q i di = L , i Z a ∗ i q ∗ i di = L ∗ . i

  32. Planning Problem U ( c ) max w ∗ , p, c, c ∗ , q, q ∗ s.t. � ⇢Z � Z c ∗ ∈ argmax ˜ u ∗ � c i di ≤ w ∗ L ∗ i (˜ c i ) di p i ˜ c ≥ 0 � � i i q ∗ q i − w ∗ a ∗ q i ≥ 0 { p i ˜ q i } i ∈ argmax ˜ i ˜ c i + c ∗ i = q i + q ∗ i Z a i q i di = L , i Z a ∗ i q ∗ i di = L ∗ . i

  33. Planning Problem • Convenient to focus on 3 key controls: • Equilibrium abroad requires... p i ( m i , w ⇤ ) ≡ min { u ⇤0 i ( − m i ) , w ⇤ a ⇤ i } , i ( m i , w ∗ ) ≡ max { m i + d ∗ i ( w ∗ a ∗ i ) , 0 } q ∗

  34. Planning Problem U ( c ) max w ∗ , p, c, c ∗ , q, q ∗ s.t. � ⇢Z � Z c ∗ ∈ argmax ˜ u ∗ � c i di ≤ w ∗ L ∗ i (˜ c i ) di p i ˜ c ≥ 0 � � i i q ∗ q i − w ∗ a ∗ q i ≥ 0 { p i ˜ q i } i ∈ argmax ˜ i ˜ c i + c ∗ i = q i + q ∗ i Z a i q i di = L , i Z a ∗ i q ∗ i di = L ∗ . i

  35. Planning Problem U ( c ) max w ∗ , p, c, c ∗ , q, q ∗ s.t.

  36. Planning Problem U ( c ) max w ∗ , p, c, c ∗ , q, q ∗ s.t. Z a i q i di ≤ L , i

  37. Planning Problem U ( c ) max w ∗ , p, c, c ∗ , q, q ∗ s.t. Z a i q i di ≤ L , i Z a ∗ i q ∗ i ( m i , w ∗ ) di ≤ L ∗ , i

  38. Planning Problem U ( c ) max w ∗ , p, c, c ∗ , q, q ∗ s.t. Z a i q i di ≤ L , i Z a ∗ i q ∗ i ( m i , w ∗ ) di ≤ L ∗ , i Z p i ( m i , w ∗ ) m i di ≤ 0 i

Recommend


More recommend