combinatorics of the zeta map on rational dyck paths
play

Combinatorics of the zeta map on rational Dyck paths Cesar Ceballos - PowerPoint PPT Presentation

Combinatorics of the zeta map on rational Dyck paths Cesar Ceballos joint with Tom Denton and Christopher Hanusa XX Coloquio Latinoamericano de Algebra, Lima Dec 8, 2014 Plan of the talk 1. Simultaneous core partitions & rational Dyck


  1. Combinatorics of the zeta map on rational Dyck paths Cesar Ceballos joint with Tom Denton and Christopher Hanusa XX Coloquio Latinoamericano de ´ Algebra, Lima Dec 8, 2014

  2. Plan of the talk 1. Simultaneous core partitions & rational Dyck paths 2. Skew length 3. Conjugation 4. Zeta map

  3. 1. Simultaneous core partitions & rational Dyck paths

  4. Simultaneous core partitions Definition Let λ ⊢ n be a partition of n ◮ say λ is an a -core if it has no cell with hook length a ◮ say λ is an ( a , b )-core partition if it has no cell with hook length a or b Example A (5 , 8)-core: 14 9 6 4 2 1 11 6 3 1 9 4 1 7 2 6 1 4 3 2 1

  5. Simultaneous core partitions Theorem (Anderson 2002) The number of ( a , b ) -cores is finite if and only if a and b are relatively prime, in which case they are counted by the rational Catalan number 1 � a + b � C a , b = a + b a

  6. Simultaneous core partitions: Anderson’s bijection Beautiful bijection: ( a , b )-cores ← → Dyck paths in an a × b rectangle 14 9 6 4 2 1 11 6 3 1 9 4 1 27 22 17 12 7 2 -3 -8 7 2 19 14 9 4 -1 -6 -11 -16 6 1 11 6 1 -4 -9 -14 -19 -24 4 3 -2 -7 -12 -17 -22 -27 -32 3 -5 -10 -15 -20 -25 -30 -35 -40 2 1

  7. Simultaneous core partitions: Anderson’s bijection Beautiful bijection: ( a , b )-cores ← → Dyck paths in an a × b rectangle 14 9 6 4 2 1 11 6 3 1 9 4 1 7 2 7 2 14 9 4 6 1 11 6 1 4 3 3 2 1

  8. Rational q -Catalan Define the q -analog of the ( a , b )-Catalan number as � a + b � 1 C a , b ( q ) = a [ a + b ] obtained by replacing every number r by its q -analog [ r ] = 1 + q + · · · + q r − 1

  9. Rational q -Catalan Define the q -analog of the ( a , b )-Catalan number as � a + b � 1 C a , b ( q ) = a [ a + b ] obtained by replacing every number r by its q -analog [ r ] = 1 + q + · · · + q r − 1 Proposition C a , b ( q ) is a polynomial if and only if a and b are relatively prime.

  10. Rational q -Catalan and q , t -Catalan Conjecture (Armstrong–Hanusa–Jones 2014) � q sl( κ )+area( κ ) C a , b ( q ) = Conjecture (Armstrong–Hanusa–Jones 2014) q area( κ ) t sl ′ ( κ ) = � � q sl ′ ( κ ) t area( κ ) sums over all ( a , b )-cores

  11. 2. Skew length

  12. Skew length a -rows: largest hooks of each residue mod a b -boundary: boxes with boxes with hooks less than b skew length: number of boxes in both the a -rows and b -boundary (5,8)-core 14 11 9 7 6 4 3 2 1 sl = 4+3+2+1 = 10

  13. Skew length (5,8)-core (8,5)-core 14 14 11 11 9 9 7 7 6 6 4 4 3 3 2 2 1 1

  14. Skew length (5,8)-core (8,5)-core 14 14 11 11 9 9 7 7 6 6 4 4 3 3 2 2 1 1 sl = 4+3+2+1 = 10 sl = 3+2+2+1+1+1 = 10

  15. Skew length (5,8)-core (8,5)-core 14 14 11 11 9 9 7 7 6 6 4 4 3 3 2 2 1 1 sl = 4+3+2+1 = 10 sl = 3+2+2+1+1+1 = 10 Theorem (C.–Denton–Hanusa) Skew length is independent of the ordering of a and b.

  16. 3. Conjugation

  17. Conjugation on cores conjugation: reflect along a diagonal 14 11 14 9 9 7 6 6 4 4 2 3 1 2 1

  18. Conjugation on Dick paths conjugation: cyclic rotation to get a path below the diagonal, rotate 180 ◦ degrees 7 2 2 14 9 4 14 9 4 11 6 1 6 1 3

  19. Conjugation Theorem (C.–Denton–Hanusa) Both conjugations coincide under Anderson’s bijection 14 2 9 14 9 4 6 6 1 4 2 1

  20. Conjugation Theorem (C.–Denton–Hanusa) Conjugations preserves skew length (5,8)-core 14 (5,8)-core 11 9 14 7 9 6 6 4 4 3 2 2 1 1 sl = 4+3+2+1 = 10 sl = 6+3+1 = 10

  21. The shaded partitions determine two amazing maps called zeta and eta statistics for q , t -enumeration of classical Dyck paths were famously difficult to find, but were nearly simultaneously discovered by Haglund (area and bounce) and Haiman (dinv and area). The zeta map sends dinv area → area bounce → Drew Armstrong: generalized this zeta map to ( a , b )-Dyck paths

  22. 4. Zeta map (and eta)

  23. Zeta and eta on cores Armstrong (zeta): The bounded partitions of zeta and eta are the shaded partitions before π ζ ( π ) η ( π ) π c eta := zeta of the conjugate

  24. Zeta and eta on cores Armstrong (zeta): The bounded partitions of zeta and eta are the shaded partitions before π ζ ( π ) η ( π ) π c eta := zeta of the conjugate Note: the map ζ ( π ) → η ( π ) is an area preserving map

  25. Zeta and eta Exercise for the party tonight: The shaded partitions fit above the main diagonal! Conjecture (Armstrong) The zeta map is a bijection on ( a , b )-Dyck paths

  26. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  27. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  28. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  29. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  30. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  31. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  32. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  33. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  34. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  35. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  36. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  37. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  38. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  39. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  40. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E

  41. Zeta and eta on Dyck paths Armstrong–Loehr–Warrington, . . . : Zeta: move diagonal up and record north and east steps as crossed ζ ( π ) E E E E E E N E N E N N N η ( π ) π N E N E N E N E N E E E E Eta: move diagonal down and record south and weast steps as crossed

  42. Zeta and eta via lasers Theorem (C.–Denton-Hanusa) Description of zeta and eta in terms of a laser filling 2 3 2 1 1 1 0 0 λ ( π ) 2 1 1 4 2 1 1 3 1 1 1 1 1 µ ( π ) 0 λ = (4 , 3 , 2 , 1 , 0) µ = (3 , 2 , 2 , 1 , 1 , 1 , 0 , 0)

  43. Zeta and eta Conjecture (Armstrong) The zeta map is a bijection on ( a , b )-Dyck paths

  44. Zeta and eta Conjecture (Armstrong) The zeta map is a bijection on ( a , b )-Dyck paths Lets construct the inverse!! (knowing zeta and eta)

  45. Zeta inverse knowing eta 10 11 12 13 9 π 13 8 7 12 6 11 5 10 4 8 9 3 7 2 4 5 6 1 3 1 2 γ (N,N,N, E, N, E,E,E, N, E,E,E,E) = (1,3,7, 12 ,9, 13 , 11 , 8 ,5, 10 , 6 , 4 , 2 )

  46. Zeta inverse knowing eta 10 11 12 13 9 π 13 8 7 12 6 11 5 10 4 8 9 3 7 2 4 5 6 1 3 1 2 γ (N,N,N, E, N, E,E,E, N, E,E,E,E) = (1,3,7, 12 ,9, 13 , 11 , 8 ,5, 10 , 6 , 4 , 2 ) Theorem (C.–Denton–Hanusa) ◮ γ is a cycle permutation. ◮ The east steps of π correspond to the descents of γ .

Recommend


More recommend