com bining inductiv e and analytical learning read ch 12
play

Com bining Inductiv e and Analytical Learning [Read Ch. 12] - PDF document

Com bining Inductiv e and Analytical Learning [Read Ch. 12] [Suggested exercises: 12.1, 12.2, 12.6, 12.7, 12.8] Wh y com bine inductiv e and analytical learning? KBANN: Prior kno wledge to initial i ze the


  1. Com bining Inductiv e and Analytical Learning [Read Ch. 12] [Suggested exercises: 12.1, 12.2, 12.6, 12.7, 12.8] � Wh y com bine inductiv e and analytical learning? � KBANN: Prior kno wledge to initial i ze the h yp othesis � T angetProp, EBNN: Prior kno wledge alters searc h ob jectiv e � F OCL: Prior kno wledge alters searc h op erators 1 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  2. Inductiv e and Analytical Learning Inductiv e learning Analytical learning Hyp othesis �ts data Hyp othesis �ts domain theory Statistical inference Deductiv e inference Requires littl e prior kno wledge Learns from scarce data Syn tactic inductiv e bias Bias is domain theory 2 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  3. What W e W ould Lik e General purp ose learning metho d: � No domain theory ! learn as w ell as inductiv e metho ds � P erfect domain theory ! learn as w ell as Pr olog-EBG Inductive learning Analytical learning Plentiful data Perfect prior knowledge � Accomo date arbitrary and unkno wn errors in No prior knowledge Scarce data domain theory � Accomo date arbitrary and unkno wn errors in training data 3 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  4. Domain theory: Cup Stable, Liftable, Op enV essel Stable BottomIsFlat Liftable Graspable, Ligh t Graspable HasHandle Op enV essel HasConca vit y , Conca vit yP oin tsUp T raining examples: Cups Non-Cups p p p p p p p p BottomIsFlat p p p p p p p Conca vit yP oin ts Up p p p p Exp ensiv e p p p p p p F ragile p p HandleOnT op p p p HandleOnSide p p p p p p p p p HasConca vit y p p p p p HasHandle p p p p p p p p Ligh t p p p p MadeOfCeramic p p MadeOfP ap er p p p p MadeOfSt yrofoam 4 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  5. KBANN KBANN (data D , domain theory B ) 1. Create a feedforw ard net w ork h equiv ale n t to B 2. Use Ba ckpr op to tune h to �t D 5 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  6. Neural Net Equiv alen t to Domain Theory Expensive Stable BottomIsFlat MadeOfCeramic MadeOfStyrofoam MadeOfPaper Graspable Liftable Cup HasHandle HandleOnTop HandleOnSide Light OpenVessel HasConcavity ConcavityPointsUp Fragile 6 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  7. Creating Net w ork Equiv alen t to Do- main Theory Create one unit p er horn clause rule (i.e., an AND unit) � Connect unit inputs to corresp onding clause an teceden ts � F or eac h non-negated an teceden t, corresp onding input w eigh t w W , where W is some constan t � F or eac h negated an teceden t, input w eigh t w � W � Threshold w eigh t w � ( n � : 5) W , where n is 0 n um b er of non-negated an teceden ts Finally , add man y additional connections with near-zero w eigh ts Lif tabl e Gr aspabl e; : H eav y 7 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  8. Result of re�ning the net w ork Expensive BottomIsFlat Stable MadeOfCeramic MadeOfStyrofoam MadeOfPaper HasHandle Graspable Liftable Cup HandleOnTop HandleOnSide Light Open-Vessel HasConcavity ConcavityPointsUp Fragile Large positive weight Large negative weight Negligible weight 8 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  9. KBANN Results Classifyi ng promoter regions in DNA lea v e one out testing: � Bac kpropagation: error rate 8/106 � KBANN: 4/106 Similar impro v emen ts on other classi�cati on, con trol tasks. 9 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  10. Hyp othesis space searc h in KBANN Hypothesis Space Hypotheses that fit training data equally well Initial hypothesis for KBANN Initial hypothesis for B ACKPROPAGATION 10 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  11. EBNN Key idea: � Previously learned appro ximate domain theory � Domain theory represen ted b y collecti on of neural net w orks � Learn target function as another neural net w ork 11 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  12. Explanation of training example Stable in terms of domain theory: BottomIsFlat = T ConcavityPointsUp = T Graspable Liftable Cup Expensive = T Fragile = T HandleOnTop = F Cup = T HandleOnSide = T HasConcavity = T HasHandle = T Light = T 0.8 MadeOfCeramic = T MadeOfPaper = F MadeOfStyrofoam = F 0.2 OpenVessel Training derivatives Target network: BottomIsFlat ConcavityPointsUp Expensive Cup target Fragile HandleOnTop HandleOnSide Cup HasConcavity 12 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997 HasHandle Light MadeOfCeramic MadeOfPaper MadeOfStyrofoam

  13. Mo di�ed Ob jectiv e for Gradien t Descen t 2 3 0 1 2 ^ 6 7 B @ A ( x ) @ f ( x ) C X X 6 7 2 B C ^ 6 7 B C E = ( f ( x ) � f ( x )) + � � 6 7 i i i @ A 4 5 j j i j @ x @ x ( x = x ) i where j A ( x ) � f ( x ) j i i � � 1 � i c � f ( x ) is target function ^ � f ( x ) is neural net appro ximation to f ( x ) � A ( x ) is domain theory appro ximation to f ( x ) 13 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  14. f(x) h f(x ) 1 f(x ) 2 f f(x ) 3 g x x x x x x 1 2 3 14 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  15. Hyp othesis Space Searc h in EBNN Hypothesis Space Hypotheses that Hypotheses that maximize fit to maximize fit to data data and prior knowledge T ANGENT P ROP Search B ACKPROPAGATION Search 15 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

  16. Searc h in F OCL Cup Generated by the domain theory Cup HasHandle [2+,3–] Cup HasHandle [2+,3–] ... Cup Fragile Cup BottomIsFlat, [2+,4–] Light, HasConcavity, ConcavityPointsUp [4+,2–] Cup BottomIsFlat, 16 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997 Light, HasConcavity, ... ConcavityPointsUp BottomIsFlat, Cup HandleOnTop Light, [0+,2–] HasConcavity, BottomIsFlat, Cup ConcavityPointsUp, Light, HandleOnSide HasConcavity, ConcavityPointsUp, [2+,0–] HandleOnTop [4+,0–]

  17. F OCL Results Recognizing legal c hess endgame p ositions: � 30 p ositiv e, 30 negativ e examples � F OIL : 86% � F OCL : 94% (using domain theory with 76% accuracy) NYNEX telephone net w ork diagnosis � 500 training examples � F OIL : 90% � F OCL : 98% (using domain theory with 95% accuracy) 17 lecture slides for textb o ok Machine L e arning , � T. c Mitc hell, McGra w Hill, 1997

Recommend


More recommend