Color Instabilities in Quark-Gluon Plasma Stanisław Mrówczyński Jan Kochanowski University, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland 1
over 30 years St. Mrówczyński, 1) Stream instabilities of the quark-gluon plasma, Physica Letters B 214 , 587 (1988), Erratum B 656 , 273 (2007) 2) St. Mrówczyński, Plasma Instability at the initial stage of ultrarelativistic heavy-ion collisions, Physics Letters B 314 , 118 (1993) 5) St. Mrówczyński and M. Thoma, Hard loop approach to anisotropic systems, Physical Review D 62 , 036011 (2000) 17) St. Mrówczyński, B. Schenke and M. Strickland, Color instabilities in the quark-gluon plasma, Physics Reports 682 , 1 (2017) 2
Elementary Physics Story on Color Instabilities in Quark-Gluon Plasma 3
Hadrons, Quarks & Gluons baryons mesons N * , K , , , n , p , , , , , , , q , q q , q , q 4
Confinement Electrodynamics Chromodynamics r energy density 1 1 2 D E , 0, u ED E 8 8 Gauss law r 2 e e E r V r const E 4 g 2 r r 4 g 4 g E r V r r K. Kogut & L. Susskind, Phys. Rev, D 9 , 3501 (1974) H.B. Nielsen & P. Olesen, Nucl. Phys. B 61 , 45 (1973) 5
Confinement cont. V r linear 2 2 m c q 0 r Coulomb The potential is studied in spectroscopy of heavy quarkonia. 6
Asymptotic Freedom 12 2 Color charge vanishes at small distances ( Q ) s 2 Q 33 2 N ln f 2 QCD Sourceless Maxwell equations in a medium D 0 D E B H B 0 2 E 0 1 B 2 2 E c t c t 2 1 D B 0 H 2 2 c t c t c phase velocity of EM wave in vacuum 1 7
Asymptotic Freedom cont. diamagnetic dielectric 1 1 charges are screened 1 paramagnetic paraelectric 1 1 charges are antiscreened ! Quarks of spin ½ produce diamagnetic effect Gluons win! Gluons of spin 1 produce paramagnetic effect G. ’t Hooft, unpublished N. K. Nielsen, Am. J. Phys. 49 , 1171 (1981) 8
Creation of Quark-Gluon Plasma compression of nuclear matter 3 0.12 fm 0 normal nuclear density 1 fm heating up hadron gas 3 ~ T hadron density m T natural system of units: c k B 9
Phase diagram of strongly interacting matter T Quark-Gluon Plasma critical point ~ 180 MeV Hadron Gas Color Superconductor 0 0 3 0 . 12 fm B B baryon density nuclei 10
Schematic phase diagram of water T supercritical vapor critical point g as liquid solid gas & liquid T 0 triple point density of molecules 11
Relativistic heavy-ion collisions after free hadrons t freeze-out hadrons hadronization equilibration time quarks & gluons z before An important role of boost invariance 2 2 t z 12
Quark-Gluon Plasma vs. EM Plasma Electromagnetic Quark-Gluon Plasma Plasma Underlying QCD QED Microscopic Theory g g g g Elementarny Interactions g g g g e e q q quarks, antiquarks electrons, positrons Fermions Constituents Massless gluons photons Gauge Bosons - massive ions 2 g 2 e 1 2 ( Q ) 0 . 1 1 Coupling 4 4 137 13
Ultrarelativistic Quark-Gluon Plasma Plasma constituents – quarks & gluons – are massless! m q T Temperature T is often the only dimensional parameter. 3 ~ T density: T 1 l ~ inter-particle spacing : 4 ~ T energy density: 4 p ~ T pressure: 14
Weakly Coupled Quark-Gluon Plasma Plasma from the earliest stage of relativistic heavy-ion collisions is assumed to be weakly coupled. 12 Asymptotic freedom formula: 2 ( Q ) s 2 Q 33 2 N ln f 2 QCD 1 / 4 Dimensional argument: Q - energy density 15
Plasma manifests collective behavior r 1 1 e D screening length ~ V ( r ) ~ D m D gT r V ( r ) Coulomb screened Debye sphere 0 r D 4 1 1 3 3 V ~ , n ~ T , n V ~ 1 if g 1 D D D 3 3 3 3 g T g In a weakly coupled plasma, there are many particles in a Debye sphere ! 16
Screening length Poisson equation charge density e V ( ) r ( ) r ( ) r r e V ( ) r T 0 eV ( ) r eV ( ) r eV ( ) r e 1 1 1 T eV ( ) r T T ( ) r e 1 T 0 2 e V ( ) r e ( ) r 0 V ( ) r T Debye mass 1 ~ m e 0 eT D T 2 d D m x 2 V x ( ) m V x ( ) V x ( ) ~ e D D 2 dx 3 0 ~ T 17
Plasma oscillations charge fluctuation E ( t , r ) E cos( ( k ) t k r ) 0 ( ) k ~ gT p k 0 plasma or Langmuir frequency E 18
Plasma frequency l Gauss theorem Q s ES flux E E 0 0 charge Q e Sx s E e x electric field E 0 x x Equation of motion Quark-gluon plasma Harmonic oscillator e g 2 x x M x F p 3 ~ T M mSl mass m ~ T plasma frequency e m ~ gT F QE force p p charge Q e Sl 19
Landau damping E x ( t , x ) E cos( t kx ) 0 0 0 v k Resonance energy transfer from electric field to particles with v = v φ 20
Instabilities stationary state Instability t A ( t ) A A ( t ) A ( t ) e 0 0 fluctuation stable configuration unstable configuration A A ( t ) 0 A A ( t ) 0 21
Plasma instabilities instabilities in configuration space – hydrodynamic instabilities instabilities in momentum space – kinetic instabilities instabilities due to non-equilibrium T E momentum distribution f ( p ) ~ exp is not 22
Kinetic instabilities i ( t kr ) k || E , ~ e longitudinal modes – i ( t kr ) k E , j ~ e transverse modes – E – electric field , k – wave vector , ρ – charge density , j – current Which modes are relevant for QGP from relativistic heavy-ion collisions? 23
Logitudinal modes unstable configuration f ( p , p , p ) plasma x y z beam p 0 x Energy is transferred from particles to fields. 24
Logitudinal modes Electric field decays - damping Electric field grows - instability f ( p , p , p ) f ( p , p , p ) x y z x y z p x p x 0 0 E E k k x x particle particle particle particle acceleration deceleration acceleration deceleration p x - particle’s velocity - phase velocity of the electric field wave, 25 k E x
Parton momentum distribution in AA collisions p x ˆ e p y Momentum distribution has a single maximum and monotonously decreases in every direction. Longitudinal unstable modes are irrelevant for relativistic heavy-ion collisions. There are unstable transverse modes. 26
Evolution of Parton Momentum Distribution time p p T T p p L L prolate oblate 27
Seeds of instability x but current fluctuations are finite j a ( ) 0 3 1 d p p p ab p ( 3 ) j ( x ) j ( x ) f ( ) ( x v t ) 0 a 1 b 2 3 2 2 ( 2 ) E p x ( , t x ) 2 2 2 x ( t t , x x ) x ( , t x ) 1 2 1 2 1 1 1 Direction of the momentum surplus 28
Mechanism of filamentation z Lorentz force F q F v B F v v v v F F j Ampere’s law z B j B y y x 29
Time scale & collisional damping Time scale of collective phenomena 1 1 t ~ ~ ~ gT collec collec gT t collec Frequency of collisions Parton-parton scattering 4 hard ~ g ln 1/ g T hard scattering: q ~ T q 2 soft ~ g ln 1/ g T soft scattering: q ~ gT 2 g 1 hard soft collec The instabilities are fast! 30
Growth of instabilities – 1+1 numerical simulations SU(2) Hard Loop Dynamics total transverse magnetic 1+1 dimensions A A ( z t , ) Scaled a a field energy density Anisotropic particle’s momentum distribution f ( p ) f (| p | p ) iso z df ( p ) 2 2 s iso m dpp D dp 0 γ * - maximal growth rate Strong anisotropy 10 A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. 94 , 102303 (2005) 31
Recommend
More recommend