coding theory and galois geometries two interacting
play

Coding theory and Galois geometries: two interacting research areas - PowerPoint PPT Presentation

Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers Coding theory and Galois geometries: two interacting research areas Leo Storme Ghent University Dept. of Pure Mathematics and


  1. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers Coding theory and Galois geometries: two interacting research areas Leo Storme Ghent University Dept. of Pure Mathematics and Computer Algebra Krijgslaan 281 - S22 9000 Ghent Belgium XVIII Latin American Algebra Colloquium 2009 Leo Storme Coding theory and Galois geometries

  2. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers O UTLINE 1 C ODING THEORY 2 E QUIVALENT PROBLEM IN CODING THEORY AND G ALOIS GEOMETRIES 3 ( x ( q + 1 ) , x ; 2 , q ) - MINIHYPERS Leo Storme Coding theory and Galois geometries

  3. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers O UTLINE 1 C ODING THEORY 2 E QUIVALENT PROBLEM IN CODING THEORY AND G ALOIS GEOMETRIES 3 ( x ( q + 1 ) , x ; 2 , q ) - MINIHYPERS Leo Storme Coding theory and Galois geometries

  4. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers L INEAR CODES Finite field (Galois field): F q : q prime power, Linear [ n , k , d ] -code C over F q is: k -dimensional subspace of V ( n , q ) , minimal distance d = minimal number of positions in which two distinct codewords differ. T HEOREM If in transmitted codeword at most ( d − 1 ) / 2 errors, it is possible to correct these errors by replacing the received n-tuple by the codeword at minimal distance. Leo Storme Coding theory and Galois geometries

  5. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers L INEAR CODES Generator matrix G of [ n , k , d ] -code C G = ( k × n ) matrix of rank k , rows of G form a basis of C , codeword of C = linear combination of rows of G . Leo Storme Coding theory and Galois geometries

  6. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers R EMARK Remark: For linear [ n , k , d ] -code C , n , k , d do not change when column g i in generator matrix G = ( g 1 · · · g n ) is replaced by non-zero scalar multiple. Leo Storme Coding theory and Galois geometries

  7. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers F ROM VECTOR SPACE TO PROJECTIVE SPACE Leo Storme Coding theory and Galois geometries

  8. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers Leo Storme Coding theory and Galois geometries

  9. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers T HE F ANO PLANE PG ( 2 , 2 ) From V ( 3 , 2 ) to PG ( 2 , 2 ) Leo Storme Coding theory and Galois geometries

  10. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers PG ( 3 , 2 ) From V ( 4 , 2 ) to PG ( 3 , 2 ) Leo Storme Coding theory and Galois geometries

  11. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers O UTLINE 1 C ODING THEORY 2 E QUIVALENT PROBLEM IN CODING THEORY AND G ALOIS GEOMETRIES 3 ( x ( q + 1 ) , x ; 2 , q ) - MINIHYPERS Leo Storme Coding theory and Galois geometries

  12. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers M INIHYPERS AND G RIESMER BOUND Problem: Given dimension k , minimal distance d , find minimal length n of [ n , k , d ] -code over F q . Result: Griesmer (lower) bound � d k − 1 � � n ≥ = g q ( k , d ) . q i i = 0 Leo Storme Coding theory and Galois geometries

  13. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers M INIHYPERS AND G RIESMER BOUND Equivalence: (Hamada and Helleseth) Griesmer (lower) bound equivalent with minihypers in finite projective spaces Leo Storme Coding theory and Galois geometries

  14. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers D EFINITION D EFINITION { f , m ; k − 1 , q } -minihyper F is: set of f points in PG ( k − 1 , q ) , F intersects every ( k − 2 ) -dimensional space in at least m points. Leo Storme Coding theory and Galois geometries

  15. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers M INIHYPERS AND G RIESMER BOUND Let C = [ g q ( k , d ) , k , d ] -code over F q . If generator matrix G = ( g 1 · · · g n ) , minihyper = PG ( k − 1 , q ) \ { g 1 , . . . , g n } . Leo Storme Coding theory and Galois geometries

  16. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers M INIHYPERS AND G RIESMER BOUND Leo Storme Coding theory and Galois geometries

  17. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers E XAMPLES Example 1. Subspace PG ( µ, q ) in PG ( k − 1 , q ) = minihyper of [ n = ( q k − q µ + 1 ) / ( q − 1 ) , k , q k − 1 − q µ ] -code (McDonald code). Leo Storme Coding theory and Galois geometries

  18. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers B OSE -B URTON THEOREM T HEOREM (B OSE -B URTON ) A minihyper consisting of | PG ( µ, q ) | points intersecting every hyperplane in at least | PG ( µ − 1 , q ) | points is equal to a µ -dimensional space PG ( µ, q ) . Leo Storme Coding theory and Galois geometries

  19. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers T HEOREM For minihyper F in PG ( 2 , q ) intersecting every line in at least one point, | F | ≥ q + 1 and | F | = q + 1 if and only if F is line L. Proof: (1) Let r �∈ F . Leo Storme Coding theory and Galois geometries

  20. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers R AJ C HANDRA B OSE R.C. Bose and R.C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the McDonald codes. J. Combin. Theory , 1:96-104, 1966. Leo Storme Coding theory and Galois geometries

  21. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers E XAMPLES Example 2. t < q pairwise disjoint subspaces PG ( µ, q ) i , i = 1 , . . . , t , in PG ( k − 1 , q ) = minihyper of [ n = ( q k − 1 ) / ( q − 1 ) − t ( q µ + 1 − 1 ) / ( q − 1 ) , k , q k − 1 − tq µ ] -code. Leo Storme Coding theory and Galois geometries

  22. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers C HARACTERIZATION RESULT T HEOREM (G OVAERTS AND S TORME ) For q odd prime and 1 ≤ t ≤ ( q + 1 ) / 2 , [ n = ( q k − 1 ) / ( q − 1 ) − t ( q µ + 1 − 1 ) / ( q − 1 ) , k , q k − 1 − tq µ ] -code C: minihyper is union of t pairwise disjoint PG ( µ, q ) . T HEOREM (B LOKHUIS ) A minihyper F in PG ( 2 , q ) , q odd prime, intersecting every line in at least one point, of size at most q + ( q + 1 ) / 2 , always contains a line. Leo Storme Coding theory and Galois geometries

  23. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers O UTLINE 1 C ODING THEORY 2 E QUIVALENT PROBLEM IN CODING THEORY AND G ALOIS GEOMETRIES 3 ( x ( q + 1 ) , x ; 2 , q ) - MINIHYPERS Leo Storme Coding theory and Galois geometries

  24. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers ( x ( q + 1 ) , x ; 2 , q ) - MINIHYPERS Hill and Ward: detailed study of ( x ( q + 1 ) , x ; 2 , q ) -minihypers. Weighted set of x ( q + 1 ) points in PG ( 2 , q ) intersecting every line in at least x points. Classical example: sum of x (not necessarily distinct) lines L 1 + · · · + L x . Leo Storme Coding theory and Galois geometries

  25. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers ( x ( q + 1 ) , x ; 2 , q ) - MINIHYPERS Leo Storme Coding theory and Galois geometries

  26. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers ( x ( q + 1 ) , x ; 2 , q ) - MINIHYPERS T HEOREM (H ILL , W ARD ) Let F be an ( x ( q + 1 ) , x ; 2 , q ) -minihyper, q = p m , p prime, m ≥ 1 , with x < q, where p f divides x. Then for each line L in PG ( 2 , q ) , | L ∩ F | ≡ x ( mod p f + 1 ) . T HEOREM (H ILL , W ARD ) Every ( x ( q + 1 ) , x ; 2 , q ) -minihyper F, q even, m ≥ 1 , with x ≤ q / 2 , is a sum of x lines. Leo Storme Coding theory and Galois geometries

  27. Coding theory Equivalent problem in coding theory and Galois geometries ( x ( q + 1 ) , x ; 2 , q ) -minihypers D UAL HYPEROVAL EXAMPLE Take a dual hyperoval O in PG ( 2 , q ) , q even: q + 2 lines, no three through a common point. Point of PG ( 2 , q ) lies on zero or two lines of O . Union of the lines of dual hyperoval is (( q / 2 + 1 )( q + 1 ) , q / 2 + 1 ; 2 , q ) -minihyper. This particular example is not a sum of q / 2 + 1 lines with integer coefficients . This particular example is a sum of q + 2 lines with coefficients 1 / 2: 1 2 L 1 + · · · + 1 2 L q + 2 . Leo Storme Coding theory and Galois geometries

Recommend


More recommend