Multiple layers and symbol-level mapping U b X ϕ b b U b ∙ Natural mapping: X = α ( U + U ) ∙ Gray mapping: X = α ( U U + U ) /
Multiple layers and symbol-level mapping U b X ϕ b b U b ∙ Natural mapping: X = α ( U + U ) ∙ Gray mapping: X = α ( U U + U ) ∙ Similar mapping ϕ exists for higher-order PAM, QPSK, QAM, PSK, MIMO, ... X QPSK = 倂 P exp 急 i π ( U U + U ) 怵 /
Multiple layers and symbol-level mapping U b X ϕ b b U b ∙ Natural mapping: X = α ( U + U ) ∙ Gray mapping: X = α ( U U + U ) ∙ Similar mapping ϕ exists for higher-order PAM, QPSK, QAM, PSK, MIMO, ... X QPSK = 倂 P exp 急 i π ( U U + U ) 怵 ∙ Can be many-to-one (still information-lossless) ∙ Can induce nonuniform X (Gallager ) /
Horizontal superposition coding U n M X n ϕ U n M /
Horizontal superposition coding U n M X n ϕ U n M ∙ Broadcast channels (Cover ), fading channels (Shamai–Steiner ) /
Horizontal superposition coding U n M X n ϕ U n M ∙ Broadcast channels (Cover ), fading channels (Shamai–Steiner ) ∙ Successive cancellation decoding: /
Horizontal superposition coding U n M X n ϕ U n M ∙ Broadcast channels (Cover ), fading channels (Shamai–Steiner ) ∙ Successive cancellation decoding: 㶳 Find a unique m such that ( u n ( m ) , y n ) is jointly typical: R < I ( U ; Y ) /
Horizontal superposition coding U n M X n ϕ U n M ∙ Broadcast channels (Cover ), fading channels (Shamai–Steiner ) ∙ Successive cancellation decoding: 㶳 Find a unique m such that ( u n ( m ) , y n ) is jointly typical: R < I ( U ; Y ) 㶳 Find a unique m such that ( u n ( m ) , u n ( m ) , y n ) is jointly typical: R < I ( U ; U , Y ) /
Horizontal superposition coding U n M X n ϕ U n M ∙ Broadcast channels (Cover ), fading channels (Shamai–Steiner ) ∙ Successive cancellation decoding: 㶳 Find a unique m such that ( u n ( m ) , y n ) is jointly typical: R < I ( U ; Y ) 㶳 Find a unique m such that ( u n ( m ) , u n ( m ) , y n ) is jointly typical: R < I ( U ; U , Y ) 㶳 Combined rate: R + R < I ( U ; Y , U ) + I ( U ; Y ) /
Horizontal superposition coding U n M X n ϕ U n M ∙ Broadcast channels (Cover ), fading channels (Shamai–Steiner ) ∙ Successive cancellation decoding: 㶳 Find a unique m such that ( u n ( m ) , y n ) is jointly typical: R < I ( U ; Y ) 㶳 Find a unique m such that ( u n ( m ) , u n ( m ) , y n ) is jointly typical: R < I ( U ; U , Y ) 㶳 Combined rate: R + R < I ( U ; Y , U ) + I ( U ; Y ) = I ( U , U ; Y ) /
Horizontal superposition coding U n M X n ϕ U n M ∙ Broadcast channels (Cover ), fading channels (Shamai–Steiner ) ∙ Successive cancellation decoding: 㶳 Find a unique m such that ( u n ( m ) , y n ) is jointly typical: R < I ( U ; Y ) 㶳 Find a unique m such that ( u n ( m ) , u n ( m ) , y n ) is jointly typical: R < I ( U ; U , Y ) 㶳 Combined rate: R + R < I ( U ; Y , U ) + I ( U ; Y ) = I ( U , U ; Y ) = I ( X ; Y ) /
Horizontal superposition coding U n M X n ϕ U n M ∙ Broadcast channels (Cover ), fading channels (Shamai–Steiner ) ∙ Successive cancellation decoding: 㶳 Find a unique m such that ( u n ( m ) , y n ) is jointly typical: R < I ( U ; Y ) 㶳 Find a unique m such that ( u n ( m ) , u n ( m ) , y n ) is jointly typical: R < I ( U ; U , Y ) 㶳 Combined rate: R + R < I ( U ; Y , U ) + I ( U ; Y ) = I ( U , U ; Y ) = I ( X ; Y ) 㶳 Regardless of ϕ or the decoding order /
Horizontal superposition coding U n M X n ϕ U n M ∙ Broadcast channels (Cover ), fading channels (Shamai–Steiner ) ∙ Successive cancellation decoding: 㶳 Find a unique m such that ( u n ( m ) , y n ) is jointly typical: R < I ( U ; Y ) 㶳 Find a unique m such that ( u n ( m ) , u n ( m ) , y n ) is jointly typical: R < I ( U ; U , Y ) 㶳 Combined rate: R + R < I ( U ; Y , U ) + I ( U ; Y ) = I ( U , U ; Y ) = I ( X ; Y ) 㶳 Regardless of ϕ or the decoding order ∙ Multi-level coding (MLC): Wachsmann–Fischer–Huber () /
Vertical superposition coding U n X n M ϕ U n /
Vertical superposition coding U n X n M ϕ U n ∙ Single codeword of length n : C n = ( C n , C n n + ) C n 㨃→ U n n + 㨃→ U n C n /
Vertical superposition coding U n X n M ϕ U n ∙ Single codeword of length n : C n = ( C n , C n n + ) C n 㨃→ U n n + 㨃→ U n C n ∙ Treating the other layer as noise: /
Vertical superposition coding U n X n M ϕ U n ∙ Single codeword of length n : C n = ( C n , C n n + ) C n 㨃→ U n n + 㨃→ U n C n ∙ Treating the other layer as noise: 㶳 Find a unique m such that ( u n ( m ) , y n ) is jointly typical ( u n ( m ) , y n ) is jointly typical and /
Vertical superposition coding U n X n M ϕ U n ∙ Single codeword of length n : C n = ( C n , C n n + ) C n 㨃→ U n n + 㨃→ U n C n ∙ Treating the other layer as noise: 㶳 Find a unique m such that ( u n ( m ) , y n ) is jointly typical ( u n ( m ) , y n ) is jointly typical and 㶳 Successful w.h.p. if R < I ( U ; Y ) + I ( U ; Y ) /
Vertical superposition coding U n X n M ϕ U n ∙ Single codeword of length n : C n = ( C n , C n n + ) C n 㨃→ U n n + 㨃→ U n C n ∙ Treating the other layer as noise: 㶳 Find a unique m such that ( u n ( m ) , y n ) is jointly typical ( u n ( m ) , y n ) is jointly typical and 㶳 Successful w.h.p. if R < I ( U ; Y ) + I ( U ; Y ) < I ( U , U ; Y ) = I ( X ; Y ) /
Vertical superposition coding U n X n M ϕ U n ∙ Single codeword of length n : C n = ( C n , C n n + ) C n 㨃→ U n n + 㨃→ U n C n ∙ Treating the other layer as noise: 㶳 Find a unique m such that ( u n ( m ) , y n ) is jointly typical ( u n ( m ) , y n ) is jointly typical and 㶳 Successful w.h.p. if R < I ( U ; Y ) + I ( U ; Y ) < I ( U , U ; Y ) = I ( X ; Y ) ∙ Bit-interleaved coded modulation (BICM): Caire–Taricco–Biglieri () /
Diagonal superposition coding U n X n M ϕ U n /
Diagonal superposition coding U n M 㰀㰀 X n ϕ M 㰀 U n /
Diagonal superposition coding M ( j − ) U n X n ϕ M ( j ) U n ∙ Think outside the block: Sequence of messages M ( j ) mapped to C n ( j ) Block U U /
Diagonal superposition coding M ( j − ) U n X n ϕ M ( j ) U n ∙ Think outside the block: Sequence of messages M ( j ) mapped to C n ( j ) Block n + ( ) C n U C n ( ) U /
Diagonal superposition coding M ( j − ) U n X n ϕ M ( j ) U n ∙ Think outside the block: Sequence of messages M ( j ) mapped to C n ( j ) Block n + ( ) n + ( ) C n C n U C n ( ) C n ( ) U /
Diagonal superposition coding M ( j − ) U n X n ϕ M ( j ) U n ∙ Think outside the block: Sequence of messages M ( j ) mapped to C n ( j ) Block n + ( ) n + ( ) n + ( ) C n C n C n U C n ( ) C n ( ) C n ( ) U /
Diagonal superposition coding M ( j − ) U n X n ϕ M ( j ) U n ∙ Think outside the block: Sequence of messages M ( j ) mapped to C n ( j ) Block n + ( ) n + ( ) n + ( ) n + ( ) C n C n C n C n U C n ( ) C n ( ) C n ( ) C n ( ) U /
Diagonal superposition coding M ( j − ) U n X n ϕ M ( j ) U n ∙ Think outside the block: Sequence of messages M ( j ) mapped to C n ( j ) Block n + ( ) n + ( ) n + ( ) n + ( ) n + ( ) C n C n C n C n C n U C n ( ) C n ( ) C n ( ) C n ( ) C n ( ) U /
Diagonal superposition coding M ( j − ) U n X n ϕ M ( j ) U n ∙ Think outside the block: Sequence of messages M ( j ) mapped to C n ( j ) Block n + ( ) n + ( ) n + ( ) n + ( ) n + ( ) n + ( ) C n C n C n C n C n C n U C n ( ) C n ( ) C n ( ) C n ( ) C n ( ) C n ( ) U /
Diagonal superposition coding M ( j − ) U n X n ϕ M ( j ) U n ∙ Think outside the block: Sequence of messages M ( j ) mapped to C n ( j ) Block n + ( ) n + ( ) n + ( ) n + ( ) n + ( ) n + ( ) C n C n C n C n C n C n U C n ( ) C n ( ) C n ( ) C n ( ) C n ( ) C n ( ) U ∙ Sliding-window decoding: /
Diagonal superposition coding M ( j − ) U n X n ϕ M ( j ) U n ∙ Think outside the block: Sequence of messages M ( j ) mapped to C n ( j ) Block n + ( ) n + ( ) n + ( ) n + ( ) n + ( ) C n C n C n C n C n U C n ( ) C n ( ) C n ( ) C n ( ) C n ( ) U ∙ Sliding-window decoding: R < I ( U ; U , Y ) + I ( U ; Y ) = I ( X ; Y ) /
Diagonal superposition coding M ( j − ) U n X n ϕ M ( j ) U n ∙ Think outside the block: Sequence of messages M ( j ) mapped to C n ( j ) Block n + ( ) n + ( ) n + ( ) n + ( ) n + ( ) C n C n C n C n C n U C n ( ) C n ( ) C n ( ) C n ( ) C n ( ) U ∙ Sliding-window decoding: R < I ( U ; U , Y ) + I ( U ; Y ) = I ( X ; Y ) ∙ Block Markov coding: Used extensively in relay and feedback communication /
Diagonal superposition coding M ( j − ) U n X n ϕ M ( j ) U n ∙ Think outside the block: Sequence of messages M ( j ) mapped to C n ( j ) Block n + ( ) n + ( ) n + ( ) n + ( ) n + ( ) C n C n C n C n C n U C n ( ) C n ( ) C n ( ) C n ( ) C n ( ) U ∙ Sliding-window decoding: R < I ( U ; U , Y ) + I ( U ; Y ) = I ( X ; Y ) ∙ Block Markov coding: Used extensively in relay and feedback communication ∙ Sliding-window coded modulation (SWCM): Kim et al. (), Wang et al. () /
Multiple-antenna transmission ∙ Consider the signal layers U and U as antenna ports: X = ( U , U ) /
Multiple-antenna transmission ∙ Consider the signal layers U and U as antenna ports: X = ( U , U ) ∙ Bell Laboratories Layered Space-Time (BLAST) architectures: /
Multiple-antenna transmission ∙ Consider the signal layers U and U as antenna ports: X = ( U , U ) ∙ Bell Laboratories Layered Space-Time (BLAST) architectures: 㶳 Horizontal: H-BLAST (Foschini et al. /), also known as V-BLAST /
Multiple-antenna transmission ∙ Consider the signal layers U and U as antenna ports: X = ( U , U ) ∙ Bell Laboratories Layered Space-Time (BLAST) architectures: 㶳 Horizontal: H-BLAST (Foschini et al. /), also known as V-BLAST 㶳 Diagonal: D-BLAST (Foschini ) /
Multiple-antenna transmission ∙ Consider the signal layers U and U as antenna ports: X = ( U , U ) ∙ Bell Laboratories Layered Space-Time (BLAST) architectures: 㶳 Horizontal: H-BLAST (Foschini et al. /), also known as V-BLAST 㶳 Diagonal: D-BLAST (Foschini ) 㶳 Vertical: Single-outer code (Foschini et al. ), but shouldn’t this be “V-BLAST”? /
Multiple-antenna transmission ∙ Consider the signal layers U and U as antenna ports: X = ( U , U ) ∙ Bell Laboratories Layered Space-Time (BLAST) architectures: 㶳 Horizontal: H-BLAST (Foschini et al. /), also known as V-BLAST 㶳 Diagonal: D-BLAST (Foschini ) 㶳 Vertical: Single-outer code (Foschini et al. ), but shouldn’t this be “V-BLAST”? ∙ Signal layers can be far more general than antenna ports /
Multiple-antenna transmission ∙ Consider the signal layers U and U as antenna ports: X = ( U , U ) ∙ Bell Laboratories Layered Space-Time (BLAST) architectures: 㶳 Horizontal: H-BLAST (Foschini et al. /), also known as V-BLAST 㶳 Diagonal: D-BLAST (Foschini ) 㶳 Vertical: Single-outer code (Foschini et al. ), but shouldn’t this be “V-BLAST”? ∙ Signal layers can be far more general than antenna ports ∙ Coded modulation can encompass MIMO transmission U U U U /
Comparison /
Comparison Horizontal U M U M Multi-level coding (MLC) R < I ( U ; Y ) R < I ( U ; U , Y ) Short, nonuniversal /
Comparison Horizontal Vertical U M M U M M Multi-level coding (MLC) Bit-interleaved coded modulation (BICM) R < I ( U ; Y ) R < I ( U ; Y ) + I ( U ; Y ) R < I ( U ; U , Y ) Short, nonuniversal Other layers as noise /
Comparison Horizontal Vertical Diagonal U M M M U M M M Multi-level coding (MLC) Bit-interleaved coded Sliding-window coded modulation (BICM) modulation (SWCM) R < I ( U ; Y ) R < I ( U ; Y ) + I ( U ; Y ) R < I ( U ; U , Y ) + I ( U ; Y ) R < I ( U ; U , Y ) = I ( X ; Y ) Short, nonuniversal Other layers as noise Error prop., rate loss /
BICM vs. SWCM 4 3.5 16PAM 3 8PAM 2.5 Symmetric Rate 2 4PAM 1.5 1 0.5 SWCM BICM 0 0 5 10 15 20 25 30 SNR(dB) LTE turbo code / ≤ -iteration LOG-MAP decoding at b = , n = , BLER = . /
BICM vs. SWCM 4 3.5 16PAM 3 8PAM 2.5 Symmetric Rate 2 4PAM 1.5 1 0.5 SWCM BICM 0 0 5 10 15 20 25 30 SNR(dB) LTE turbo code / ≤ -iteration LOG-MAP decoding at b = , n = , BLER = . /
Application: Interference channels desired signal interference /
Optimal rate region (Bandemer–El-Gamal–Kim ) X p ( y | x , x ) Y p ( y | x , x ) Y X /
Optimal rate region (Bandemer–El-Gamal–Kim ) X p ( y | x , x ) Y p ( y | x , x ) Y X R R < I ( X ; Y | X ) R + R < I ( X , X ; Y ) or R < I ( X ; Y ) R /
Optimal rate region (Bandemer–El-Gamal–Kim ) X p ( y | x , x ) Y p ( y | x , x ) Y X R R < I ( X ; Y | X ) R + R < I ( X , X ; Y ) or R < I ( X ; Y ) R /
Optimal rate region (Bandemer–El-Gamal–Kim ) X p ( y | x , x ) Y p ( y | x , x ) Y X R R < I ( X ; Y | X ) R + R < I ( X , X ; Y ) or R < I ( X ; Y ) R /
Low-complexity (implementable) alternatives R X p ( y | x , x ) Y p ( y | x , x ) Y X R /
Low-complexity (implementable) alternatives R X p ( y | x , x ) Y p ( y | x , x ) Y X R ∙ PP decoding /
Low-complexity (implementable) alternatives R X p ( y | x , x ) Y p ( y | x , x ) Y X R ∙ PP decoding 㶳 Treating interference as (Gaussian) noise: R < I ( X ; Y ) /
Low-complexity (implementable) alternatives R X p ( y | x , x ) Y p ( y | x , x ) Y X R ∙ PP decoding 㶳 Treating interference as (Gaussian) noise: R < I ( X ; Y ) 㶳 Successive cancellation decoding: R < I ( X ; Y ) , R < I ( X ; Y | X ) /
Low-complexity (implementable) alternatives R U X p ( y | x , x ) Y U p ( y | x , x ) Y X R ∙ PP decoding 㶳 Treating interference as (Gaussian) noise: R < I ( X ; Y ) 㶳 Successive cancellation decoding: R < I ( X ; Y ) , R < I ( X ; Y | X ) ∙ + rate splitting (Zhao et al. , Wang et al. ) /
Low-complexity (implementable) alternatives R X p ( y | x , x ) Y p ( y | x , x ) Y X R ∙ PP decoding 㶳 Treating interference as (Gaussian) noise: R < I ( X ; Y ) 㶳 Successive cancellation decoding: R < I ( X ; Y ) , R < I ( X ; Y | X ) ∙ + rate splitting (Zhao et al. , Wang et al. ) ∙ Novel codes 㶳 Spatially coupled codes (Yedla, Nguyen, Pfister, and Narayanan ) 㶳 Polar codes (Wang and S ¸o˘ ¸as glu ) /
Sliding-window superposition coding (Wang et al. ) M ( j − ) U n X n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) U n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) X n /
Sliding-window superposition coding (Wang et al. ) M ( j − ) U n X n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) U n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) X n Block U U M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) X /
Sliding-window superposition coding (Wang et al. ) M ( j − ) U n X n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) U n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) X n Block M ( ) U M ( ) U M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) X /
Sliding-window superposition coding (Wang et al. ) M ( j − ) U n X n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) U n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) X n Block M ( ) M ( ) U M ( ) M ( ) U M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) X /
Sliding-window superposition coding (Wang et al. ) M ( j − ) U n X n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) U n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) X n Block M ( ) M ( ) M ( ) U M ( ) M ( ) M ( ) U M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) X /
Sliding-window superposition coding (Wang et al. ) M ( j − ) U n X n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) U n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) X n Block M ( ) M ( ) M ( ) M ( ) U M ( ) M ( ) M ( ) M ( ) U M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) X /
Sliding-window superposition coding (Wang et al. ) M ( j − ) U n X n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) U n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) X n Block M ( ) M ( ) M ( ) M ( ) M ( ) U M ( ) M ( ) M ( ) M ( ) M ( ) U M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) X /
Sliding-window superposition coding (Wang et al. ) M ( j − ) U n X n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) U n M ( j ) → M ( j ) M ( j ) Y n p ( y | x , x ) X n Block M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) U M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) U M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) M ( ) X /
Recommend
More recommend