co combining the k cn cnf and xor phase se transitions
play

Co Combining the k-CN CNF and XOR Phase se-Transitions Jeffrey M. - PowerPoint PPT Presentation

Co Combining the k-CN CNF and XOR Phase se-Transitions Jeffrey M. Dudek , Kuldeep S. Meel, & Moshe Y. Vardi Rice University Random k-CNF F Satis isfia iabil ilit ity [Franco and Paull, 1983] Definitio ion:Let CNF (,)


  1. Co Combining the k-CN CNF and XOR Phase se-Transitions Jeffrey M. Dudek , Kuldeep S. Meel, & Moshe Y. Vardi Rice University

  2. Random k-CNF F Satis isfia iabil ilit ity [Franco and Paull, 1983] β€’ Definitio ion:Let CNF 𝒍 (𝒐,𝒔) be a random variable denoting a uniformly chosen k- CNF formula with π‘œ variables and π‘œπ‘  k-CNF clauses. β€’ 𝒐 : The number of variables. β€’ 𝒍 : The width of every CNF clause. β€’ r : CNF clause density = Ratio of # of CNF clauses to # of variables. β€’ Ex: π‘Œ 1 ∨ Β¬π‘Œ 5 ∨ π‘Œ 6 β‹€ Β¬π‘Œ 1 ∨ π‘Œ 3 ∨ π‘Œ 5 is one possible value for CNF 3 (6,1/3) . β€’ Prob oblem: Fixing 𝑙 and 𝑠, what is the asymptotic probability that CNF 𝑙 (π‘œ, 𝑠) is satisfiableas π‘œ goes to infinity? Combining the k-CNF and XOR Phase-Transitions 2

  3. k-CNF F Ph Phase e Transit ition Probability that CNF 3 400,𝑠 is satisfiable 1 Probability of Satisfiability 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 r : 3-CNF Clause Density (#clauses / #variables) Combining the k-CNF and XOR Phase-Transitions 3

  4. k-CNF F Ph Phase e Transit ition Probability that CNF 3 400,𝑠 is satisfiable k-CN CNF Phase-Transition on Con onject cture: 1 For every 𝑙 β‰₯ 2 , there is a constant Probability of Satisfiability 0.8 𝑠 𝑙 > 0 such that: 0.6 0.4 0.2 𝑠 3 0 0 1 2 3 4 5 6 7 8 r : 3-CNF Clause Density (#clauses / #variables) Combining the k-CNF and XOR Phase-Transitions 4

  5. XOR Ph Phase-Transit itio ion [Creignou and DaudΓ©, 1999] β€’ Definitio ion: An XOR R clause is the exclusive-or of a set of variables, possibly including 1 as well. Ex Ex: π‘Œ 2 β¨π‘Œ 4 , 1β¨π‘Œ 1 β¨π‘Œ 2 β¨π‘Œ 7 β€’ Definitio ion: Let XOR(𝒐,𝒕) be a random variable denoting a uniformly chosen XOR formula with π‘œ variables and π‘œπ‘‘ XOR clauses. β€’ n : The number of variables. β€’ s : XOR clause density = Ratio of # of XOR clauses to # of variables. Prob oblem: Fixing 𝑑 , what is the asymptotic probability that XOR(π‘œ, 𝑑) is satisfiable as π‘œ goes to infinity? Combining the k-CNF and XOR Phase-Transitions 5

  6. XOR Ph Phase-Transit itio ion [Creignou and DaudΓ©, 1999] β€’ Definitio ion: An XOR R clause is the exclusive-or of a set of variables, possibly including 1 as well. Ex Ex: π‘Œ 2 β¨π‘Œ 4 , 1β¨π‘Œ 1 β¨π‘Œ 2 β¨π‘Œ 7 β€’ Definitio ion: Let XOR(𝒐,𝒕) be a random variable denoting a uniformly chosen XOR formula with π‘œ variables and π‘œπ‘‘ XOR clauses. β€’ n : The number of variables. β€’ s : XOR clause density = Ratio of # of XOR clauses to # of variables. Prob oblem: Fixing 𝑑 , what is the asymptotic probability that XOR(π‘œ, 𝑑) is satisfiable as π‘œ goes to infinity? π‘œβ†’βˆž Pr XOR(π‘œ, 𝑑) is sat. = α‰Š1 if 𝑑 < 1 lim 0 if 𝑑 > 1 Combining the k-CNF and XOR Phase-Transitions 6

  7. Combin ining k-CNF and XOR Together β€’ Motivation: Hashing-based sampling and counting algorithms use formulas with both k-CNF and XOR clauses. [Gomes et al. 2007], [Chakraborty et al. , 2013], [Ermon et al. 2013] β€’ β€’ Definition: A k-CNF-XOR formula is the conjunction of k-CNF and XOR clauses. β€’ Goal : Analyze the β€œbehavior” of k -CNF-XOR formulas. β€’ In this work we analyze the asymptotic satisfiability of random k-CNF-XOR formulas. Combining the k-CNF and XOR Phase-Transitions 7

  8. Random k-CNF-XOR Satisfia iabili ility β€’ Definitio ion:Let 𝝎 𝒍 (𝒐,𝒔,𝒕) be a random variable denoting CNF 𝑙 (π‘œ, 𝑠) ∧ XOR(π‘œ, 𝑑) β€’ i.e. the conjunction of π‘œπ‘  random k-CNF clauses and π‘œπ‘‘ random XOR clauses. β€’ n : The number of variables. β€’ k : The width of every CNF clause. β€’ r : k-CNF clause density. β€’ s : XOR clause density. Prob oblem: Fixing 𝑙 , 𝑠 , and 𝑑, what is the asymptotic probability that πœ” 𝑙 (π‘œ, 𝑠, 𝑑) is satisfiable as π‘œ goes to infinity? Combining the k-CNF and XOR Phase-Transitions 8

  9. k-CNF-XOR: Wh What Do Do We Ex Expec ect to See? e? Probability that πœ” 5 π‘œ, 𝑠, 𝑑 = CNF 5 (π‘œ, 𝑠) ∧ XOR(π‘œ,𝑑) is satisfiable s: XOR Clause Density ? 9 r: 5-CNF Clause Density

  10. Probability that πœ” 5 100,𝑠, 𝑑 = CNF 5 (100,𝑠) ∧ XOR(100,𝑑) is satisfiable s: XOR Clause Density r: 5-CNF Clause Density 10

  11. Theorem 1: 1: The k-CNF-XOR Ph Phas ase-Tran ansition Ex Exists πœ” 𝑙 π‘œ, 𝑠,𝑑 = CNF 𝑙 (π‘œ, 𝑠) ∧ XOR π‘œ,𝑑 is a random variable denoting a uniformly chosen k -CNF-XOR formula over n variables with CNF-density r and XOR-density s . Thm 1: For all 𝑙 β‰₯ 2 , there are functions 𝜚 𝑙 and constants 𝛽 𝑙 β‰₯ 1 such that random k-CNF-XOR formulas have a phase-transition located at 𝑑 = 𝜚 𝑙 (𝑠) when r < 𝛽 𝑙 . For all 𝑑 β‰₯ 0 , and 0 ≀ 𝑠 ≀ 𝛽 𝑙 (except for at most countably many 𝑠 ): What can we say about 𝜚 𝑙 ? Combining the k-CNF and XOR Phase-Transitions 11

  12. Theo eorem em 2: 2: Loca catin ing the e Ph Phase-Transit itio ion π‘œβ†’βˆž Pr πœ” 𝑙 (π‘œ, 𝑠, 𝑑) is sat. = 0 lim What can we say about 𝜚 𝑙 , the location of the k-CNF-XOR phase-transition? s: XOR Clause Density Thm2 : For 𝑙 β‰₯ 3 , we have linear upper and lower bounds on 𝜚 𝑙 (𝑠) . π‘œβ†’βˆž Pr πœ” 𝑙 (π‘œ, 𝑠, 𝑑) is sat. = 1 lim r: 5-CNF Clause Density Combining the k-CNF and XOR Phase-Transitions 12

  13. Conclu clusio ion formulas at k-CNF clause densities below 𝛽 𝑙 . β€’ There is a phase-transition in the satisfiability of random k-CNF-XOR β€’ We have some explicit bounds on the location. Future Work: βˆ— > 0 . β€’ Conjecture: There is a phase-transition in k-CNF-XOR formulas at all k-CNF β€’ Conjecture: 𝜚 𝑙 (𝑠) is linear for k-CNF clause densities below some 𝛽 𝑙 clause densities. β€’ How does the runtime of SAT solvers on k-CNF-XOR equations behave near the phase-transition? Combining the k-CNF and XOR Phase-Transitions 13

  14. Thanks! s: XOR Clause Density 14 r: 5-CNF Clause Density

  15. Citatio ions β€’ [Ermon et al. 2013] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Taming the curse of dimensionality: Discrete integration by hashing and optimization. In Proc. of ICML , pages 334 – 342, 2013. β€’ [Franco and Paull, 1983] J. Franco and M. Paull. Probabilistic analysis of the Davis – Putnam procedure for solving the satisfiability problem. Discrete Applied Math ematics, 5(1):77 – 87, 1983. β€’ [Chakraborty et al. 2013] S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scalable and nearly uniform generator of SAT witnesses. In Proc. of CAV , pages 608 – 623, 2013. β€’ [Creignou and DaudΓ©, 1999] N. Creignou and H. DaudΓ©. Satisfiability threshold for random xor-cnf formulas. Discrete Applied Mathematics , 9697:41 – 53, 1999. β€’ [Gomes et al. 2007] C.P. Gomes, A. Sabharwal, and B. Selman. Near-Uniform sampling of combinatorial spaces using XOR constraints. In Proc. of NIPS , pages 670 – 676, 2007 β€’ [Goerdt, 1996] A. Goerdt. A threshold for unsatisfiability . Journal of Computer and System Sciences, 53(3):469 – 486, 1996. Combining the k-CNF and XOR Phase-Transitions 15

  16. Runtime Behavio ior at the Transit itio ion Average satisfiability and solve time of 𝐺 3 200, 200𝑠 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 Clause Density r (#Clauses/#Variables) Probability of Satisfiability Solve Time Combining the k-CNF and XOR Phase-Transitions 16

Recommend


More recommend