Co Combining the k-CN CNF and XOR Phase se-Transitions Jeffrey M. Dudek , Kuldeep S. Meel, & Moshe Y. Vardi Rice University
Random k-CNF F Satis isfia iabil ilit ity [Franco and Paull, 1983] β’ Definitio ion:Let CNF π (π,π) be a random variable denoting a uniformly chosen k- CNF formula with π variables and ππ k-CNF clauses. β’ π : The number of variables. β’ π : The width of every CNF clause. β’ r : CNF clause density = Ratio of # of CNF clauses to # of variables. β’ Ex: π 1 β¨ Β¬π 5 β¨ π 6 β Β¬π 1 β¨ π 3 β¨ π 5 is one possible value for CNF 3 (6,1/3) . β’ Prob oblem: Fixing π and π , what is the asymptotic probability that CNF π (π, π ) is satisfiableas π goes to infinity? Combining the k-CNF and XOR Phase-Transitions 2
k-CNF F Ph Phase e Transit ition Probability that CNF 3 400,π is satisfiable 1 Probability of Satisfiability 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 r : 3-CNF Clause Density (#clauses / #variables) Combining the k-CNF and XOR Phase-Transitions 3
k-CNF F Ph Phase e Transit ition Probability that CNF 3 400,π is satisfiable k-CN CNF Phase-Transition on Con onject cture: 1 For every π β₯ 2 , there is a constant Probability of Satisfiability 0.8 π π > 0 such that: 0.6 0.4 0.2 π 3 0 0 1 2 3 4 5 6 7 8 r : 3-CNF Clause Density (#clauses / #variables) Combining the k-CNF and XOR Phase-Transitions 4
XOR Ph Phase-Transit itio ion [Creignou and DaudΓ©, 1999] β’ Definitio ion: An XOR R clause is the exclusive-or of a set of variables, possibly including 1 as well. Ex Ex: π 2 β¨π 4 , 1β¨π 1 β¨π 2 β¨π 7 β’ Definitio ion: Let XOR(π,π) be a random variable denoting a uniformly chosen XOR formula with π variables and ππ‘ XOR clauses. β’ n : The number of variables. β’ s : XOR clause density = Ratio of # of XOR clauses to # of variables. Prob oblem: Fixing π‘ , what is the asymptotic probability that XOR(π, π‘) is satisfiable as π goes to infinity? Combining the k-CNF and XOR Phase-Transitions 5
XOR Ph Phase-Transit itio ion [Creignou and DaudΓ©, 1999] β’ Definitio ion: An XOR R clause is the exclusive-or of a set of variables, possibly including 1 as well. Ex Ex: π 2 β¨π 4 , 1β¨π 1 β¨π 2 β¨π 7 β’ Definitio ion: Let XOR(π,π) be a random variable denoting a uniformly chosen XOR formula with π variables and ππ‘ XOR clauses. β’ n : The number of variables. β’ s : XOR clause density = Ratio of # of XOR clauses to # of variables. Prob oblem: Fixing π‘ , what is the asymptotic probability that XOR(π, π‘) is satisfiable as π goes to infinity? πββ Pr XOR(π, π‘) is sat. = α1 if π‘ < 1 lim 0 if π‘ > 1 Combining the k-CNF and XOR Phase-Transitions 6
Combin ining k-CNF and XOR Together β’ Motivation: Hashing-based sampling and counting algorithms use formulas with both k-CNF and XOR clauses. [Gomes et al. 2007], [Chakraborty et al. , 2013], [Ermon et al. 2013] β’ β’ Definition: A k-CNF-XOR formula is the conjunction of k-CNF and XOR clauses. β’ Goal : Analyze the βbehaviorβ of k -CNF-XOR formulas. β’ In this work we analyze the asymptotic satisfiability of random k-CNF-XOR formulas. Combining the k-CNF and XOR Phase-Transitions 7
Random k-CNF-XOR Satisfia iabili ility β’ Definitio ion:Let π π (π,π,π) be a random variable denoting CNF π (π, π ) β§ XOR(π, π‘) β’ i.e. the conjunction of ππ random k-CNF clauses and ππ‘ random XOR clauses. β’ n : The number of variables. β’ k : The width of every CNF clause. β’ r : k-CNF clause density. β’ s : XOR clause density. Prob oblem: Fixing π , π , and π‘, what is the asymptotic probability that π π (π, π , π‘) is satisfiable as π goes to infinity? Combining the k-CNF and XOR Phase-Transitions 8
k-CNF-XOR: Wh What Do Do We Ex Expec ect to See? e? Probability that π 5 π, π , π‘ = CNF 5 (π, π ) β§ XOR(π,π‘) is satisfiable s: XOR Clause Density ? 9 r: 5-CNF Clause Density
Probability that π 5 100,π , π‘ = CNF 5 (100,π ) β§ XOR(100,π‘) is satisfiable s: XOR Clause Density r: 5-CNF Clause Density 10
Theorem 1: 1: The k-CNF-XOR Ph Phas ase-Tran ansition Ex Exists π π π, π ,π‘ = CNF π (π, π ) β§ XOR π,π‘ is a random variable denoting a uniformly chosen k -CNF-XOR formula over n variables with CNF-density r and XOR-density s . Thm 1: For all π β₯ 2 , there are functions π π and constants π½ π β₯ 1 such that random k-CNF-XOR formulas have a phase-transition located at π‘ = π π (π ) when r < π½ π . For all π‘ β₯ 0 , and 0 β€ π β€ π½ π (except for at most countably many π ): What can we say about π π ? Combining the k-CNF and XOR Phase-Transitions 11
Theo eorem em 2: 2: Loca catin ing the e Ph Phase-Transit itio ion πββ Pr π π (π, π , π‘) is sat. = 0 lim What can we say about π π , the location of the k-CNF-XOR phase-transition? s: XOR Clause Density Thm2 : For π β₯ 3 , we have linear upper and lower bounds on π π (π ) . πββ Pr π π (π, π , π‘) is sat. = 1 lim r: 5-CNF Clause Density Combining the k-CNF and XOR Phase-Transitions 12
Conclu clusio ion formulas at k-CNF clause densities below π½ π . β’ There is a phase-transition in the satisfiability of random k-CNF-XOR β’ We have some explicit bounds on the location. Future Work: β > 0 . β’ Conjecture: There is a phase-transition in k-CNF-XOR formulas at all k-CNF β’ Conjecture: π π (π ) is linear for k-CNF clause densities below some π½ π clause densities. β’ How does the runtime of SAT solvers on k-CNF-XOR equations behave near the phase-transition? Combining the k-CNF and XOR Phase-Transitions 13
Thanks! s: XOR Clause Density 14 r: 5-CNF Clause Density
Citatio ions β’ [Ermon et al. 2013] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Taming the curse of dimensionality: Discrete integration by hashing and optimization. In Proc. of ICML , pages 334 β 342, 2013. β’ [Franco and Paull, 1983] J. Franco and M. Paull. Probabilistic analysis of the Davis β Putnam procedure for solving the satisfiability problem. Discrete Applied Math ematics, 5(1):77 β 87, 1983. β’ [Chakraborty et al. 2013] S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scalable and nearly uniform generator of SAT witnesses. In Proc. of CAV , pages 608 β 623, 2013. β’ [Creignou and DaudΓ©, 1999] N. Creignou and H. DaudΓ©. Satisfiability threshold for random xor-cnf formulas. Discrete Applied Mathematics , 9697:41 β 53, 1999. β’ [Gomes et al. 2007] C.P. Gomes, A. Sabharwal, and B. Selman. Near-Uniform sampling of combinatorial spaces using XOR constraints. In Proc. of NIPS , pages 670 β 676, 2007 β’ [Goerdt, 1996] A. Goerdt. A threshold for unsatisfiability . Journal of Computer and System Sciences, 53(3):469 β 486, 1996. Combining the k-CNF and XOR Phase-Transitions 15
Runtime Behavio ior at the Transit itio ion Average satisfiability and solve time of πΊ 3 200, 200π 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 Clause Density r (#Clauses/#Variables) Probability of Satisfiability Solve Time Combining the k-CNF and XOR Phase-Transitions 16
Recommend
More recommend