CMU 15-251 Graphs: Basics Teachers: Anil Ada Ariel Procaccia (this time)
Zachary Karate Club 2
Zachary Karate Club CLUB networkkarate.tumblr.com 3
Facebook 4
Facebook π = 10 9 π = 10 12 5
6 Donor 2 Exchange Patient 2 Kidney Patient 1 Donor 1
Kidney Exchange 7
World Wide Web 8
9
Types of graphs π π π π π π π π π π π π 10
Retronym 11
Basic Definitions π» β’ π π = π o πΉ πΉ = π o π {π£, π€} β’ π π£ β π€ π β’ π = π, π, π, π π o πΉ = { {π, π}, {π, π}, {π, π}, π, π } o 12
Edge Cases β’ β’ π = 1,2,3,4 o πΉ = β o 13
The Null Graph 14
The Null Graph 15
Mr. Vertexβs Neighborhood π£, π€ β πΉ π£ β’ π π€ π β’ π π(π£) π£ π€ β π π£, π€ β πΉ} π deg(π£) β’ π π = π, π π£ π π£ deg π = 2 16
π£βπ deg(π£) = 2π β’ β’ β’ β’ β’ β’ o o π£βπ deg(π£) β’ β’β’ o β’ o 2π β 2 + 2 + 3 + 1 = 2 β 4 17
Facebook, revisited π = 10 9 π = 10 12 18
Regular Graphs π β’ π 0 β’ β’ 1 2 β’ π = {π, π, π, π} 1 1 3 6 12 19
3-regular graphs 20
Connectedness π» π£, π€ β π β’ π£ π€ 21
Connectedness 22
π = 1 π = 2 π = 3 π = 1 π = 2 π = 0 π = 4 π = 3 23
π β 1 π 24
π β 1 β’ π β’ π» π o π»β² π» π»β² π β 1 o π β 1 β 25
Acyclic graphs π» β’ π = π β 1 β π» π» β π = π β 1 π» β π = π β 1 26
Trees 27
Graph Theory Haiku 28
Hamiltonian Cycle * π» β’ π€ β π π» β’ π β₯ 3 deg π£ + deg π€ β₯ π π£, π€ β π π» 29
Proof * π» β’ π· π· β’ π·β² 30
Proof * {π, π} π· β’ π β’ π π π π(π) π· β’ deg π β₯ π β deg(a) = π β π π = π β S π > |π β (π βͺ π )| π π β π β’ β β’ 31
Summary β’ o o o o β’ π» , o πΉ = π β 1 β π£βπ deg(π£) = 2π o o 32
Recommend
More recommend