cmu 15 251
play

CMU 15-251 Graphs: Basics Teachers: Anil Ada Ariel Procaccia - PowerPoint PPT Presentation

CMU 15-251 Graphs: Basics Teachers: Anil Ada Ariel Procaccia (this time) Zachary Karate Club 2 Zachary Karate Club CLUB networkkarate.tumblr.com 3 Facebook 4 Facebook = 10 9 = 10 12 5 6 Donor 2 Exchange Patient 2 Kidney


  1. CMU 15-251 Graphs: Basics Teachers: Anil Ada Ariel Procaccia (this time)

  2. Zachary Karate Club 2

  3. Zachary Karate Club CLUB networkkarate.tumblr.com 3

  4. Facebook 4

  5. Facebook π‘œ = 10 9 𝑛 = 10 12 5

  6. 6 Donor 2 Exchange Patient 2 Kidney Patient 1 Donor 1

  7. Kidney Exchange 7

  8. World Wide Web 8

  9. 9

  10. Types of graphs 𝑏 𝑏 𝑏 𝑐 𝑐 𝑐 𝑑 𝑑 𝑑 𝑒 𝑒 𝑒 10

  11. Retronym 11

  12. Basic Definitions 𝐻 β€’ π‘Š π‘Š = π‘œ o 𝐹 𝐹 = 𝑛 o 𝑏 {𝑣, 𝑀} β€’ 𝑐 𝑣 β‰  𝑀 𝑑 β€’ π‘Š = 𝑏, 𝑐, 𝑑, 𝑒 𝑒 o 𝐹 = { {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑐, 𝑑}, 𝑑, 𝑒 } o 12

  13. Edge Cases β€’ β€’ π‘Š = 1,2,3,4 o 𝐹 = βˆ… o 13

  14. The Null Graph 14

  15. The Null Graph 15

  16. Mr. Vertex’s Neighborhood 𝑣, 𝑀 ∈ 𝐹 𝑣 β€’ 𝑏 𝑀 𝑐 β€’ 𝑑 𝑂(𝑣) 𝑣 𝑀 ∈ π‘Š 𝑣, 𝑀 ∈ 𝐹} 𝑒 deg(𝑣) β€’ 𝑂 𝑐 = 𝑏, 𝑑 𝑣 𝑂 𝑣 deg 𝑐 = 2 16

  17. π‘£βˆˆπ‘Š deg(𝑣) = 2𝑛 β€’ β€’ β€’ β€’ β€’ β€’ o o π‘£βˆˆπ‘Š deg(𝑣) β€’ β€’β€’ o β€’ o 2𝑛 ∎ 2 + 2 + 3 + 1 = 2 β‹… 4 17

  18. Facebook, revisited π‘œ = 10 9 𝑛 = 10 12 18

  19. Regular Graphs 𝑒 β€’ 𝑒 0 β€’ β€’ 1 2 β€’ π‘Š = {𝑏, 𝑐, 𝑑, 𝑒} 1 1 3 6 12 19

  20. 3-regular graphs 20

  21. Connectedness 𝐻 𝑣, 𝑀 ∈ π‘Š β€’ 𝑣 𝑀 21

  22. Connectedness 22

  23. π‘œ = 1 π‘œ = 2 π‘œ = 3 𝑛 = 1 𝑛 = 2 𝑛 = 0 π‘œ = 4 𝑛 = 3 23

  24. π‘œ βˆ’ 1 π‘œ 24

  25. π‘œ βˆ’ 1 β€’ π‘œ β€’ 𝐻 𝑙 o 𝐻′ 𝐻 𝐻′ 𝑙 βˆ’ 1 o π‘œ βˆ’ 1 ∎ 25

  26. Acyclic graphs 𝐻 β€’ 𝑛 = π‘œ βˆ’ 1 β‡’ 𝐻 𝐻 β‡’ 𝑛 = π‘œ βˆ’ 1 𝐻 ⇔ 𝑛 = π‘œ βˆ’ 1 26

  27. Trees 27

  28. Graph Theory Haiku 28

  29. Hamiltonian Cycle * 𝐻 β€’ 𝑀 ∈ π‘Š 𝐻 β€’ π‘œ β‰₯ 3 deg 𝑣 + deg 𝑀 β‰₯ π‘œ 𝑣, 𝑀 ∈ π‘Š 𝐻 29

  30. Proof * 𝐻 β€’ 𝐷 𝐷 β€’ 𝐷′ 30

  31. Proof * {𝑏, 𝑐} 𝐷 β€’ 𝑇 β€’ 𝑏 𝑏 𝑐 𝑂(𝑏) 𝐷 β€’ deg 𝑐 β‰₯ π‘œ βˆ’ deg(a) = π‘Š βˆ’ 𝑂 𝑏 = π‘Š βˆ’ S 𝑑 > |π‘Š βˆ– (𝑇 βˆͺ 𝑐 )| 𝑐 𝑑 ∈ 𝑇 β€’ ∎ β€’ 31

  32. Summary β€’ o o o o β€’ 𝐻 , o 𝐹 = π‘œ βˆ’ 1 ⇔ π‘£βˆˆπ‘Š deg(𝑣) = 2𝑛 o o 32

Recommend


More recommend