CMSC828T Vision, Planning And Control In Aerial Robotics QUADROTOR DYNAMICS 9/7/2017 1 z
Why is Dynamics Important? Point A to Point B Most of these slides are inspired by MEAM620 Slides at UPenn 9/7/2017 2 z
Forces and Moments πΊ 2 πΊ 3 π 2 π 3 π 3 π 2 πΊ 1 π 2 π 2 π 3 π 3 πΊ π 1 4 π 3 π 4 π 3 π 1 π 4 π 4 π 2 π 1 π 1 π 4 π 1 Body Frame π 3 π π΅ π πΆ π π 2 World/Inertial Frame π 1 9/7/2017 3 z
Forces and Moments πΊ 2 πΊ 3 π 2 π 3 πΊ Recall fluid dynamics, 1 π 2 π 3 π 3 πΊ 2 πΊ π β π π π 1 4 π 4 2 π 1 πΊ π = k F π π π 4 2 π π = k M π π π 2 Net Force: π 1 πΊ = βπΊ π β mgπ 3 π β {1,2,3,4} Body Frame π 3 π π΅ π πΆ π π 2 k F and k M depends on propellers: # blades, World/Inertial Frame diameter, pitch, material, air viscosity etc. π 1 9/7/2017 4 z
αΆ αΆ αΆ Newton-Euler Equation for a Quadrotor π΅ π πΆ = ππ 1 + ππ 2 + π π 3 Angular velocities in body frame π 3 In Inertial frame: 0 0 π΅ 0 0 π α· π = + π πΆ βππ πΊ 1 + πΊ 2 + πΊ 3 + πΊ 4 π£ 1 π 2 Recall, Eulerβs rotation equation: π 1 π = π½ αΆ π + π Γ (π½π) π π£ 2 Now, in body frame: π πΊ 2 β πΊ π π π 4 π π π½ = π πΊ 3 β πΊ β Γ π½ π 1 π π π 1 β π 2 + π 3 β π 4 π 9/7/2017 5 z
αΆ αΆ αΆ αΆ αΆ αΆ Newton-Euler Equation for a Quadrotor π 3 2 and π π = π π π π 2 Remember: πΊ π = π πΊ π π π π π π Let πΏ = π πΊ = πΊ π π πΊ 2 β πΊ π π π 4 π 2 π π π½ = π πΊ 3 β πΊ β Γ π½ π 1 π π π 1 β π 2 + π 3 β π 4 π 1 π π£ 2 π πΊ 1 π π π 0 π 0 βπ πΊ 2 βπ 0 π 0 π½ = β π Γ π½ π π πΊ 3 πΏ βπΏ πΏ βπΏ π π π πΊ 4 9/7/2017 6 z
Controller Inputs πΊ 2 πΊ 1 1 1 1 πΊ 3 1 π£ = π£ 1 πΊ 2 π 2 0 π 0 βπ π 3 π£ 2 = βπ π 0 0 πΊ 3 πΊ 1 π 3 πΏ βπΏ πΏ βπΏ πΊ πΊ 4 4 π 1 π 4 thrust moment x = moment y moment z π 2 π 1 Everything is in the body frame! Body Frame 9/7/2017 7 z
Recommend
More recommend