cmsc828t
play

CMSC828T Vision, Planning And Control In Aerial Robotics QUADROTOR - PowerPoint PPT Presentation

CMSC828T Vision, Planning And Control In Aerial Robotics QUADROTOR DYNAMICS 9/7/2017 1 z Why is Dynamics Important? Point A to Point B Most of these slides are inspired by MEAM620 Slides at UPenn 9/7/2017 2 z Forces and Moments 2


  1. CMSC828T Vision, Planning And Control In Aerial Robotics QUADROTOR DYNAMICS 9/7/2017 1 z

  2. Why is Dynamics Important? Point A to Point B Most of these slides are inspired by MEAM620 Slides at UPenn 9/7/2017 2 z

  3. Forces and Moments 𝐺 2 𝐺 3 𝑁 2 𝑁 3 𝑁 3 𝑁 2 𝐺 1 𝑐 2 πœ• 2 𝑐 3 πœ• 3 𝐺 𝑁 1 4 𝑠 3 𝑁 4 𝑐 3 πœ• 1 πœ• 4 𝑠 4 𝑐 2 𝑁 1 𝑐 1 𝑁 4 𝑐 1 Body Frame 𝑏 3 𝑀 𝐡 𝑠 𝐢 𝑃 𝑏 2 World/Inertial Frame 𝑏 1 9/7/2017 3 z

  4. Forces and Moments 𝐺 2 𝐺 3 𝑁 2 𝑁 3 𝐺 Recall fluid dynamics, 1 πœ• 2 𝑐 3 πœ• 3 𝐺 2 𝐺 𝑗 ∝ πœ• 𝑗 𝑁 1 4 𝑁 4 2 πœ• 1 𝐺 𝑗 = k F πœ• 𝑗 πœ• 4 2 𝑁 𝑗 = k M πœ• 𝑗 𝑐 2 Net Force: 𝑐 1 𝐺 = βˆ‘πΊ 𝑗 βˆ’ mg𝑐 3 𝑗 ∈ {1,2,3,4} Body Frame 𝑏 3 𝑀 𝐡 𝑠 𝐢 𝑃 𝑏 2 k F and k M depends on propellers: # blades, World/Inertial Frame diameter, pitch, material, air viscosity etc. 𝑏 1 9/7/2017 4 z

  5. ሢ ሢ ሢ Newton-Euler Equation for a Quadrotor 𝐡 πœ• 𝐢 = π‘žπ‘ 1 + π‘Ÿπ‘ 2 + 𝑠𝑐 3 Angular velocities in body frame 𝑐 3 In Inertial frame: 0 0 𝐡 0 0 𝑛 ሷ 𝑠 = + 𝑆 𝐢 βˆ’π‘›π‘• 𝐺 1 + 𝐺 2 + 𝐺 3 + 𝐺 4 𝑣 1 𝑐 2 Recall, Euler’s rotation equation: 𝑐 1 𝑁 = 𝐽 ሢ πœ• + πœ• Γ— (π½πœ•) 𝑀 𝑣 2 Now, in body frame: 𝑀 𝐺 2 βˆ’ 𝐺 π‘ž π‘ž π‘ž 4 π‘Ÿ π‘Ÿ 𝐽 = 𝑀 𝐺 3 βˆ’ 𝐺 βˆ’ Γ— 𝐽 π‘Ÿ 1 𝑠 𝑠 𝑁 1 βˆ’ 𝑁 2 + 𝑁 3 βˆ’ 𝑁 4 𝑠 9/7/2017 5 z

  6. ሢ ሢ ሢ ሢ ሢ ሢ Newton-Euler Equation for a Quadrotor 𝑐 3 2 and 𝑁 𝑗 = 𝑙 𝑁 πœ• 𝑗 2 Remember: 𝐺 𝑗 = 𝑙 𝐺 πœ• 𝑗 𝑙 𝑁 𝑁 𝑗 Let 𝛿 = 𝑙 𝐺 = 𝐺 𝑗 𝑀 𝐺 2 βˆ’ 𝐺 π‘ž π‘ž π‘ž 4 𝑐 2 π‘Ÿ π‘Ÿ 𝐽 = 𝑀 𝐺 3 βˆ’ 𝐺 βˆ’ Γ— 𝐽 π‘Ÿ 1 𝑠 𝑠 𝑁 1 βˆ’ 𝑁 2 + 𝑁 3 βˆ’ 𝑁 4 𝑐 1 𝑠 𝑣 2 𝑀 𝐺 1 π‘ž π‘ž π‘ž 0 𝑀 0 βˆ’π‘€ 𝐺 2 βˆ’π‘€ 0 𝑀 0 𝐽 = βˆ’ π‘Ÿ Γ— 𝐽 π‘Ÿ π‘Ÿ 𝐺 3 𝛿 βˆ’π›Ώ 𝛿 βˆ’π›Ώ 𝑠 𝑠 𝑠 𝐺 4 9/7/2017 6 z

  7. Controller Inputs 𝐺 2 𝐺 1 1 1 1 𝐺 3 1 𝑣 = 𝑣 1 𝐺 2 πœ• 2 0 𝑀 0 βˆ’π‘€ πœ• 3 𝑣 2 = βˆ’π‘€ 𝑀 0 0 𝐺 3 𝐺 1 𝑐 3 𝛿 βˆ’π›Ώ 𝛿 βˆ’π›Ώ 𝐺 𝐺 4 4 πœ• 1 πœ• 4 thrust moment x = moment y moment z 𝑐 2 𝑐 1 Everything is in the body frame! Body Frame 9/7/2017 7 z

Recommend


More recommend