black hole candidates in gamma ray bursts
play

Black Hole Candidates in Gamma-Ray Bursts Xuefeng Wu Purple - PowerPoint PPT Presentation

Black Holes and Friends Fudan University,2015.3.30-4.1 Black Hole Candidates in Gamma-Ray Bursts Xuefeng Wu Purple Mountain Observatory Chinese Academy of Sciences Collaborators Collaborators Liang Li, Weihua Weihua Lei, Lei, Zigao


  1. Black Holes and Friends Fudan University,2015.3.30-4.1 Black Hole Candidates in Gamma-Ray Bursts Xuefeng Wu Purple Mountain Observatory Chinese Academy of Sciences Collaborators Collaborators : Liang Li, Weihua Weihua Lei, Lei, Zigao Zigao Dai, Dai, Enwei Enwei Liang, and Bing Zhang 1

  2. Basic Features of GRBs -- detection rate: -- temporal features -- spectral features -- spatial features • Photon Energy 1-2 events per day by CGRO/BATSE 1 eV ─ 1 MeV ─ 30 GeV • Profiles • Non-thermal : Complicated N(E) ∝ E - α • Durations • High Energy Tail: 5 ms ─ 10 s ─ 5 × 10 3 s • Variability no cutoff above 1 MeV • Fluence: 0.1ms ─1ms , Lack of weak GRBs 10 -10 ─ 10 -8 J /m 2 • No repetition Isotropic log

  3. Short vs. Long GRBs Long Bursts: collapsars Short Bursts: mergers Short Bursts: mergers Long Bursts: collapsars Young (few million yrs) Old (few billion yrs) Old (few billion yrs) Young (few million yrs) Star-forming regions Outside galaxies Outside galaxies Star-forming regions

  4. How to identify black holes in GRBs? Gehrels, Piro & Leonard 2002, Scientific American

  5. Outline 1. GRB X-ray shallow-decays/plateaus and the magnetar model 2. GRB X-ray shallow-decays/plateaus and the black hole candidates 3. Summary 5

  6. X-ray shallow-decay/plateaus - Swift/XRT discovery in 2005 and hydrodynamic origin GRB050319 t -5.5 ν -1.6  0.22 t -1.14 ν -0.80  0.08 t -0.54 ν -0.69  0.06 Cusumano et al., 2006, ApJ, 639, 316 6

  7. a large sample ~ about 50% GRBs have X-ray shallow decay/plateaus for more details of data analysis on X-ray plateaus of Swift GRBs, see Liang et al., 2007, ApJ, 670, 565, 7

  8. 2 classes of X-ray plateaus external origin vs. internal origin Energy injection: 1 、 most plateaus are of external origin Magnetic Matter-dominated ? dissipation ? 2 、 no quantitative internal plateau model Poynting dominated ? GRB070110 GRB050319 Cusumano et al., 2006, ApJ, 639, 316 Troja et al., 2007, ApJ, 665, 599 8

  9. Matter-dominated energy injection model end of injection Forward Shock Lorentz factor distribution ( Rees & Meszaros 1998 ):    s M

  10. Poynting-flux dominated energy injection model Injected luminosity ( Dai & Lu 1998 ):    q ( / ) , L t T t T     0 L    2  L t T ( / ) , t T   0 Poynting flux millisecond magnetar end of injection or Forward Shock fast-rotating black hole Forward shock energy: Poynting flux E k,iso ∝ t 1-q , see Zhang et al., 2006, ApJ 10 B-field Nousek et al., 2006, ApJ

  11. Poynting-flux dominated injection by millisecond magnetar numerical calculations and fittings to the observations Dai & Lu 1998; Zhang & Meszaros 2001; Fan & Xu 2006; Dall’Osso et al. 2011, etc. 11

  12. Relativistic wind bubble (RWB) model Shocked ambient medium Shocked e-e+ wind External Relativistic e - e + wind Shock Black hole Termination Shock Contact Discontinuity Dai (2004, ApJ) 12

  13. Dai (2004) analytical light curves Yu & Dai (2007) numerical light curves 13

  14. Dai (2004) : X-ray plateaus may be highly polarized detectable by future X-ray polarimeter (such as XTP) 14

  15. Lv & Zhang Sample for GRB Magnetars Gold: internal plateaus, (3 known z & 6 unknown z) Silver: external plateaus, (33 known z) Short GRBs 15

  16. Magnetars in short GRBs X-ray plateau traces Collapse of the the spin-down of the magnetar? magnetar?

  17. Magnetars in short GRBs X-ray plateaus Rowlinson et al. (2013) 17

  18. Magnetars in short GRBs Rowlinson et al. (2013)

  19. Where are black holes in GRBs? Gehrels, Piro & Leonard 2002, Scientific American

  20. Outline 1. GRB X-ray shallow-decays/plateaus and the magnetar model 2. GRB X-ray shallow-decays/plateaus and the black hole candidates 3. Summary 20

  21. Plateau Model Comparison : Magnetar vs. BH GRB afterglow jet GRB afterglow jet isotropic injection collimated injection low efficiency high efficiency 21

  22. Magnetar parameters 2 observables , 2 variables : ( 1 ) dipole magnetic B-field; ( 2 ) initial rotational Period 。 22

  23. Lv & Zhang Sample for GRB Magnetars Magnetar Magnetar isotropic collimated injection injection ? Gold: internal plateaus, 3 known z & 6 unknown z Silver: external plateaus, 33 known z 23 Aluminum: other plateaus

  24. Collimated wind from magnetar >> After plateau / Bucciantini et al., 2008, MNRAS, 383, L25 24 Bucciantini et al., 2009, MNRAS, 396, 2038

  25. Lv & Zhang Sample for GRB Magnetars Magnetar Magnetar isotropic collimated injection injection Gold: internal plateaus, 3 known z & 6 unknown z Silver: external plateaus, 33 known z 25 Aluminum: other plateaus

  26. Collimated wind from magnetar Assumptions of Bucciantini et al. simulations ( 1 ) GRB prompt phase , progenitor envelope exist X-ray plateaus , 1 – 10 ks after the prompt phase ( 2 ) B >=10^15 G , magnetar luminosity about 10^51 erg/s , at least 10^50 erg/s 。 X-ray plateaus, much lower B and luminosity (10^47 – 10^49 erg/s) ( 3 ) highly magnetization, Lorentz factor about 10 X-ray plateaus, unknown magnetization, higher Lorentz factor ( 4 ) toroidal magnetic field outside the magnetar, toothpase effect ( kink instability? ) X-ray plateaus, still toroidal magnetic field? No conclusive words about isotropic or collimated magnetar wind during the plateau phase 平台相结束后 >> / Bucciantini et al., 2008, MNRAS, 383, L25 26 Bucciantini et al., 2009, MNRAS, 396, 2038

  27. More reasonable criteria for magnetar/BH Gold: Ex,iso > 2x10^52 erg, Ek,iso > 2x10^52 erg Black holes ?! ( 4 GRBs ) Lower limit on E_k,iso Silver: Ex,iso < 2x10^52 erg, (unknown radiation Ek,iso > 2x10^52 erg efficiency) Black holes ? ( 62 GRBs ) Bronze: Ex,iso < 2x10^52 erg, Ek,iso < 2x10^52 erg Magnetar ? ( 13 GRBs ) GRB afterglow model has a lot of parameters

  28. BH candidates in GRB X-ray plateaus (4 GRBs) (62 GRBs) (13 GRBs) 28

  29. Spin parameter of GRB BH candidates a<0.1 29

  30. Blandford-Znajek mechanism GRB afterglow jet Lei, W. H., Zhang, B., & Liang, E. W., 2013, ApJ 1 、 BH rotational energy : 其中黑洞自转参数: 2 、 BZ power : 其中: Ratio of B-field angular velocity to BH spin 30

  31. BH spin evolution in Blandford-Znajek process BH spin evolution : spin up (1) k=0.5, maximum BZ power (2) Region I(IA, IB) , spin down spin down L BZ,iso ∝ t -q q>0 (3) Region II , spin up L BZ,iso ∝ t -q 31 q<0 Wang, D. X., Lei, W. H., Xiao, K., & Ma, R. Y., 2002, ApJ

  32. BH spin evolution in Blandford-Znajek process initial condition : BH spin evolution (BZ) : (1) initial spin of X-ray plateau - after the prompt GRB ; (2) When k=0.6, and solid line: k=0.6 dashed line: k=0.5 (upper and lower limits depends on k value as well as the inner radius of the accretion disk) BH spin up, and X-ray plateau with q<0 ; (3) Otherwise , X-ray plateau with q>0 L BZ,iso ∝ t -q 32 Wang, D. X., Lei, W. H., Xiao, K., & Ma, R. Y., 2002, ApJ

  33. Outline 1. GRB X-ray shallow-decays/plateaus and the magnetar model 2. GRB X-ray shallow-decays/plateaus and the black hole candidates 3. Summary 33

  34. Summary • Both magnetar and BH models can explain the X-ray shallow-decay/plateaus of GRBs well ; • Less energetic (smaller than the NS maximum rotational energy, 2e52 erg) X-ray plateaus may originate from magnetars • More energetic (larger than the NS maximum rotational energy, 2e52 erg) X-ray plateaus may originate from black holes • We plan to apply detailed BZ mechanism to constrain BH parameters with X-ray plateaus 34

Recommend


More recommend