classifications of parabolic dulac germs
play

Classifications of parabolic Dulac germs Maja Resman c, J. P. - PowerPoint PPT Presentation

Classifications of parabolic Dulac germs Maja Resman c, J. P. Rolin, V. (joint with P. Marde si Zupanovi c) University of Zagreb, Croatia AQTDE2019, Castro Urdiales June 17, 2019 Dulac or almost regular germs Definition


  1. Classifications of parabolic Dulac germs Maja Resman c, J. P. Rolin, V. ˇ (joint with P. Mardeˇ si´ Zupanovi´ c) University of Zagreb, Croatia AQTDE2019, Castro Urdiales June 17, 2019

  2. Dulac or almost regular germs Definition [Ilyashenko] . Parabolic almost regular germ ( Dulac germ ): ◮ f ∈ C ∞ (0 , d ) ◮ extends to a holomorphic germ f to a standard quadratic domain Q : 1 2 , C, R > 0 , Q = Φ( C + \ K (0 , R )) , Φ( η ) = η + C ( η + 1) in the logarithmic chart ξ = − log z .

  3. Standard quadratic domain � | k | π r k := r ( ϕ k ) ∼ e − C 2 , k → ±∞ , � � ϕ k ∈ ( k − 1) π, ( k + 1) π

  4. ◮ f admits the Dulac asymptotic expansion: ∞ � z α i P i ( − log z ) , f ( z ) ∼ z → 0 1 · z + k =1 n � z α i P i ( − log z ) = O ( z α n ) , n ∈ N , i.e. f ( z ) − z − i =1 ◮ α i > 1 , strictly increasing to + ∞ , ◮ α i finitely generated 1 , ◮ P i polynomials . ◮ R + invariant under f (i.e. coefficients of � f real!) 1 There exist β k , k = 1 . . . n , such that: α i ∈ N β 1 + . . . + N β n .

  5. Motivation and history ◮ first return maps for polycycles with hyperbolic saddle singular points – n saddle vertices with hyperbolicity ratios β i > 0 (Dulac) ◮ locally at the saddle � x = x + h.o.t. ˙ y = − β i y + h.o.t. ˙

  6. Motivation and history ◮ Dulac’s problem : accumulation of limit cycles on a hyperbolic polycycle possible? ◮ limit cycles = fixed points of the first return map ◮ Dulac: accumulation ⇒ trivial power-log asymptotic expansion of the first return map ⇒ trivial germ on R + (Dulac’s mistake) ◮ the problem: Dulac asymptotic expansion does not uniquely determine f on R + (add any exponentially small term w.r.t. x !), e.g. f ( x ) ∼ x + x 2 − log x, f ( x ) + e − 1 /x ∼ x + x 2 − log x, x → 0 ◮ Ilyashenko’s solution: first return maps extendable to a SQD ◮ SQD sufficiently large complex domain : by a variant of maximum modulus principle ( Phragmen-Lindel¨ of ), Dulac’s expansion uniquely determines the germ on a SQD!

  7. Questions ⋆ goal: theory like the standard theory of Birkhoff, Ecalle, Voronin, Kimura, Leau etc. for parabolic analytic germs Diff( C , 0) ◮ formal classification of parabolic Dulac germs – by a sequence (!!! not necesarily convergent) of formal power-logarithmic changes of variables ϕ − 1 ◦ � � g = � f ◦ � ϕ, � f, � g Dulac expansions, ϕ ( z ) = z + h.o.t. diffeo- with power-log asymptotic expansion � ◮ analytic classification of parabolic Dulac germs g = ϕ − 1 ◦ f ◦ ϕ, f, g Dulac germs on Q , ϕ ( z ) = z + o ( z ) analytic on Q ◮ ϕ admits � ϕ as its asymptotic expansion?

  8. ◮ simpler question: is a Dulac germ analytically embeddable in a flow of an analytic vector field ξ ( z ) d dz defined on a standard quadratic domain? (= describe trivial analytic class) g = ϕ − 1 ◦ f 0 ◦ ϕ, f, f 0 Dulac germs, f 0 time-one map of an analytic vector field, ϕ analytic. Example f ( z ) = z + z 2 + z 3 + . . . = 1 − z time-one map of z 2 d z dy .

  9. Historical results - germs of parabolic analytic diffeomorphisms (Fatou ∼ end of 19 th century; Birkhoff ∼ 1950 ; Ecalle, Voronin ∼ 1980 , . . . ) f ∈ Diff ( C , 0) , f ( z ) = z + a 1 z k +1 + a 2 z k +2 + . . . , k ∈ N • Formal embedding = formal reduction to a time-one map of a vector field : f 0 ( z ) = Exp ( z k +1 dx ) . id = z + z k +1 + ( ρ + k + 1 d ) z 2 k +1 + . . . 1 + ρz k 2 Step-by-step elimination of monomials from f : � ϕ ( z ) = az + � ∞ az, a � = 1 , k =2 c k z k ∈ C [[ z ]] ϕ ℓ ( z ) = ↔ � z + cz ℓ , ℓ ∈ N (formal changes of variables) ⇒ ( k, ρ ) , k ∈ N , ρ ∈ C . . . formal invariants for f .

  10. Historical results - germs of analytic diffeomorphisms • Is f analytically embeddable, or just formally? ↔ Does � ϕ converge to an analytic function at 0 ? Leau-Fatou flower theorem (1987): ⋆ 2 k analytic conjugacies ϕ i of f to f 0 , all expanding in � ϕ ⋆ defined on 2 k petals invariant under local discrete dynamics − 1 ⋆ k attracting directions: ( − a 1 ) − 1 k ; k repelling directions: a k 1 k = 3 → 6 petals, f ( z ) = z + z 4 + . . . → in general, analytic embedding in a flow only on open sectors → the analytic class of f in direct relation with this question

  11. FORMAL CLASSIFICATION OF DULAC GERMS

  12. Formal embedding into flows for Dulac germs (non-analytic at 0 ) • elimination term-by-term by an adapted ’sequence’ of non-analytic elementary changes of variables : ϕ ( z ) = az ; ϕ α,m ( z ) = z + cz α ℓ m , m ∈ Z , α > 0 , ( α, m ) ≻ (1 , 0) . Example (MRRZ, 2016) 0 . f ( z ) = z − z 2 ℓ − 1 + z 2 + z 3 , 1 . ϕ 1 ( z ) = z + c 1 z ℓ , c 1 ∈ C , ◦ f ◦ ϕ 1 ( z ) = z − z 2 ℓ − 1 + a 1 z 2 ℓ + h.o.t, f 1 ( z ) = ϕ − 1 1 2 . ϕ 2 ( z ) = z + c 2 z ℓ 2 , c 2 ∈ R , + a 2 z 2 ℓ 2 + h.o.t, f 2 ( z ) = ϕ − 1 ◦ f ◦ ϕ 2 ( z ) = z + z 2 ℓ − 1 2 3 . ϕ 3 ( z ) = z + c 3 z ℓ 3 , c 3 ∈ R , + a 2 z 2 ℓ 3 + h.o.t, f 3 ( z ) = ϕ − 1 ◦ f ◦ ϕ 3 ( z ) = z + z 2 ℓ − 1 3 . . .

  13. The visualisation of the reduction procedure

  14. The description of the formal change of variables • more than just a formal series composition of changes of variables: a transfinite composition, → produces a transseries � ϕ : ⋆ in the process, prove that every change has its successor change ⋆ prove the formal convergence of composition of changes of variables: by transfinite induction 1 in the formal topology 2 1 a generalization of the mathematical induction from N to ordinal numbers: existence of a successor element and a limit element , 2 i.e. in each step of composition the support remains well-ordered; the coefficient of each monomial in the support stabilizes in the course of composition.

  15. A broader class closed to embeddings: the class of power-log transseries � L ...contains both the Dulac germ expansions f �→ � f and the formal changes of variables ∞ � � L . . . � � a α,k z α ℓ k , a α,k ∈ R , N α ∈ Z , f ( z ) = α ∈ S k = N α S ⊆ (0 , ∞ ) well-ordered (here: finitely gen.) Similarly we define � L 2 , � L 3 , etc. and � L := ∪ k ∈ N � L k . (iterated logarithms admitted!)

  16. Theorem (Formal embedding theorem for Dulac germs, MRRZ 2016) f ( z ) = z − az α ℓ m + h.o.t. parabolic Dulac, a > 0 , α > 1 , m ∈ N − . � ⇒ formally in � L conjugated to: � � − z α ℓ m d f 0 ( z ) = exp � k � . id = 2 z α − 1 ℓ k + 1 − α z α − 1 ℓ k +1 dz 2 − ρ = z − z α ℓ m + ρz 2 α − 1 ℓ 2 m +1 + h.o.t. ⋆ ( α, m, ρ ) , ρ ∈ R . . . formal invariants for Dulac germ ⋆ f 0 ( z ) a time-one map of an analytic vector field on SQD ( Q + )

  17. Example continued Example (continued) � � z 2 ℓ − 1 f 0 ( z ) = exp − � � . id = 1 − z ℓ − 1 + b − 1 z 2 = z − z 2 ℓ − 1 + bz 3 ℓ − 1 + h.o.t., ϕ − 1 ◦ � ϕ ∈ � f 0 = � f ◦ � ϕ, � L – a transfinite change of variables

  18. ANALYTIC CLASSIFICATION OF DULAC GERMS

  19. Choice of analytic conjugacy - analytic on standard quadratic domain Definition [MRR, in progress] f and g Dulac on SQD Q are analytically conjugated if there exists ◮ ϕ ( z ) = z + o ( z ) analytic on Q ◮ g = ϕ − 1 ◦ f ◦ ϕ on Q . ⇒ ϕ admits asymptotic expansion in � L ⇒ f and g formally conjugated in � L ⇒ expansion in � L ⊂ � L . Another possible classification: ϕ ∈ R { z } (non-ramified)

  20. The (formal) Fatou coordinate and Abel equation ” = ” (formal) embedding in a vector field ’Equivalent’ problems: 1. (formal) conjugation of f to f 0 (time-one map of an analytic vector field) 2. (formal) Fatou coordinate for f Ψ( f ( z )) − Ψ( z ) = 1 (Abel equation) Ψ( � � f ( z )) − � Ψ( z ) = 1 (formal Abel equation) Ψ = Ψ 0 ◦ ϕ , � Ψ = Ψ 0 ◦ � ϕ

  21. Historical results - construction of the Ecalle-Voronin moduli of analytic classification for Diff ( C , 0) ⋆ simplest formal class ( k = 1 , ρ = 0) ; f 0 ( z ) = Exp( z 2 d z dz ) = 1 − z ⋆ f ∈ Diff ( C , 0) , f ( z ) = z + z 2 + z 3 + o ( z 3 ) Ψ( f ( z )) − Ψ( z ) = 1 (Abel equation) Fatou, 1919 : ◮ unique (up to aditive constant) formal solution � Ψ( z ) ∈ − 1 /z + z C [[ z ]] , ◮ unique (up to aditive constant) analytic solutions Ψ ± ( z ) on petals V ± ◮ Ψ ± admit � Ψ( z ) as asymptotic expansion → Fatou coordinates, sectorial trivialisations

  22. Ecalle-Voronin moduli of analytic classification for Diff ( C , 0) Ecalle, Voronin : spaces of attr./repelling orbits (spheres!) ”glued” at closed orbits (poles!) by 2 germs of diffeomorphisms: ϕ 0 ( t ) := e − 2 πi Ψ − ◦ (Ψ + ) − 1 ( − log t 2 πi ) , t ≈ 0 , ϕ ∞ ( t ) := e − 2 πi Ψ + ◦ (Ψ − ) − 1 ( − log t 2 πi ) , t ≈ ∞

  23. Ecalle-Voronin moduli of analytic classification for Diff ( C , 0) Identifications: � � � � aϕ 0 ( bt ) , 1 bϕ ∞ ( t , a, b ∈ C ∗ ϕ 0 ( t ) , ϕ ∞ ( t ) ≡ a ) (choice of constant in Ψ ± , i.e. coordinates on spheres) Theorem Ecalle-Voronin : After identifications, ( ϕ 0 , ϕ ∞ ) are analytic invariants. Realisation theorem : Each pair ( ϕ 0 , ϕ ∞ ) tangent to identity can be realized as E-V modulus of a germ from the model formal class. Trivial modulus (id , id) ↔ analytically embeddable germs

Recommend


More recommend