Circuit Analysis and Defect Characteristics Estimation Method Using Bimodal Defect-Centric Random Telegraph Noise Model March 17, 2016 TAU 2017 Michitarou Yabuuchi (Renesas System Design Co., Ltd.), Azusa Oshima, Takuya Komawaki, Ryo Kishida, Jun Furuta, Kazutoshi Kobayashi (Kyoto Inst. of Tech.), Pieter Weckx (KU Leuven, IMEC), Ben Kaczer (IMEC), Takashi Matsumoto (University of Tokyo), and Hidetoshi Onodera (Kyoto University) 1
Kyoto Inst. of Tech. Summary What is proposed? Defect parameter extraction method and RTN (random telegraph noise) prediction method ๐ ๐ @40 nm SiON ฮค ฮค โ๐บ ๐บ โ๐บ ๐บ max max Measurement result of RTN Prediction by frequency fluctuation proposed method distribution by RTN 2
Kyoto Inst. of Tech. Contents ๏ฎ Introduction ๏ฎ Measurement of RTN ๏ฎ Parameter extraction method ๏ฎ Result ๏ฎ Conclusion 3
Kyoto Inst. of Tech. Variation on scaled process -65 nm process voltage temperature process voltage RTN 40 nm- temperature More significant scaling in โsmall areaโ ๏ฎ RTN affects the yields โ CMOS image sensor โ Flash, SRAM 4
Kyoto Inst. of Tech. RTN: Random Telegraph Noise Capture Emit th | |โ๐ t # of defect Gate area ๐๐ + + + + + + โ๐ th /defect + Carier + Si 5
Kyoto Inst. of Tech. Threshold voltage shift ฮ๐ th by RTN ๏ฎ Defect-centric distribution ๐ โ๐ th = ๐ ร ๐ Avg. 2๐๐ 2 โ ฮค Std. dev. ๐ ฮ๐ th = 1 ๐๐ 1 # of Defect ๐ โ ๐๐ ฮ๐ th /defect ๐ โ ๐๐ Poisson dist. Exponential dist. 6
Kyoto Inst. of Tech. RTN in high-k process ๏ฝ 65nm 40nm 28nm Unimodal model Bimodal model Each oxide layer has its parameters High-k layer (HK) : ๐ถ ๐๐ , ๐ฝ ๐๐ Interface layer (IL) : ๐ถ ๐๐ , ๐ฝ ๐๐ 7
Kyoto Inst. of Tech. Comparison : Unimodal vs Bimodal Unimodal model Bimodal model ( N , ๐ฝ ) ( N HK , ๐ฝ HK , N IL , ๐ฝ IL ) CCDF ร N CCDF ร N ฮVth [ mV] ฮVth [ mV] SiO 2 or SiON HKMG thin HK/IL 8
Kyoto Inst. of Tech. Circuit-level RTN prediction ๐ถ ๐๐ , ๐ฝ ๐๐ , ๐ถ ๐๐ , ๐ฝ ๐๐ ? Calculation by bimodal model of Defect-centric distribution Defect Threshold parameter voltage shift Netlist RTN Circuit w/ โ๐ prediction th Monte-Carlo circuit simulation 9
Kyoto Inst. of Tech. Purpose of this study ๏ฎ Parameter extraction method for RTN characteristics of bimodal model of Defect-centric distribution RO measurement data Proposed ๐ถ ๐๐ , ๐ฝ ๐๐ , ๐ถ ๐๐ , ๐ฝ ๐๐ ! method Confirm w/ Defect Threshold parameter voltage shift measured data Netlist RTN Circuit w/ โ๐ prediction th 10
Kyoto Inst. of Tech. Measurement circuit 40 nm HK/Poly-Si Process TEG x840 7-stage ring oscillator (RO) Count # of oscillation by using on-chip counter 11
Kyoto Inst. of Tech. Measurement method Conditions 9,024 times/RO ๐ dd = 0.65 V ฮ๐ข = 2.2 ms ๐ข total = 20 s Fmin ฮ๐บ = ๐บ max โ ๐บ min Calculate for each RO ๐บ ๐บ max max 12
Kyoto Inst. of Tech. Result of frequency fluctuation distribution by RTN Follow bimodal defect-centric distribution Standard normal quantile 840 ROs 8.61% ฮค โ๐บ ๐บ max 13
Kyoto Inst. of Tech. How to extract parameters Optimize defect vector Prior to the loop Sensitivity Analysis ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ , ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ , ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ , ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ , ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ KS test (calculate object function) ๐ ๐ Measured data Prediction ฮค โ๐บ ๐บ ฮค โ๐บ ๐บ max max 14
Kyoto Inst. of Tech. Obtain threshold voltage shift ๏ฎ Calculate ฮ๐ th w/ defect characteristics โ By using defect-centric distribution ๐ถ ๐๐,๐ , ๐ฝ ๐๐,๐ , ๐ถ ๐๐,๐ , ๐ฝ ๐๐,๐ ฮ๐ ฮ๐ ฮ๐ thp1 thp2 thp7 ใป ใป ใป ฮ๐ ฮ๐ ฮ๐ thn1 thn2 thn7 14 Tr. X 840 RO 15
Kyoto Inst. of Tech. Convert ฮ๐ th to frequency shift (1) ๏ฎ Prior to the loop ฮค ๏ฎ Analyze sensitivity ฮ๐ โ๐บ ๐บ th to max of MOSFET โ Simulation condition : same as measurement โ Shift ฮ๐ th of single NMOS and PMOS ๐ p ๐ n max PMOS โ๐บ ๐บ ฮค NMOS ฮ๐ th [V] 16
Kyoto Inst. of Tech. Convert ฮ๐ th to frequency shift (2) ฮค โ๐บ ๐บ max with sensitivities ๐ n , ๐ p ๏ฎ Calculate INV RO ฮค ฮค โ๐บ ๐บ max = เท โ๐บ INV,๐ ๐บ ฮค โ๐บ INV,๐ ๐บ max max = X840 RO ฮ๐ thp,๐ ร ๐ p ฮค โ๐บ ๐บ = prediction of max + distribution ฮ๐ thn,๐ ร ๐ n 17
Kyoto Inst. of Tech. Calculation of object function ๏ฎ Kolmogorov-Smirnov test for null hypothesis โpopulations of two samples are the same.โ Sample #1:measured data Sample #2:prediction ๐ ๐ ฮค ฮค โ๐บ ๐บ โ๐บ ๐บ max max Object function ๐ becomes larger when difference b/w two CDF plots becomes smaller. 18
Kyoto Inst. of Tech. Manipulation of defect vector ๏ฎ Downhill simplex method ๏ฎ Solution for optimization problem โ Maximize object function ๐ ๐ ๐ ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ , ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ , ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ ๐ ๐ ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ , ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ ๐ ๐ ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ , ๐ถ ๐๐๐ , ๐ฝ ๐๐๐ ๐ ๐ Convergence condition ๐ ๐ > 0.99 or ๐ MAX = 500 19
Kyoto Inst. of Tech. Prediction vs measurement data Standard Normal Quantile Prediction Measured ฮค โ๐บ ๐บ max 20
Kyoto Inst. of Tech. Conclusion ๏ฎ RTN prediction method by using circuit simulation with bimodal defect-centric distribution ๏ฎ Parameter extraction method for defect characteristics of bimodal model by measurement data ๏ฎ Replicate circuit-level RTN effect by Monte- Carlo simulation 21
Recommend
More recommend