chern simons theory and the higher genus b model
play

ChernSimons theory and the higher genus B-model Andrea Brini - PowerPoint PPT Presentation

ChernSimons theory and the higher genus B-model Andrea Brini University of Birmingham & CNRS Quantum fields, knots and strings, Sep 2018 (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 1 / 39 This talk Main thread


  1. Two stringy viewpoints on ω M 3 , K g , h Take A : counts of open holomorphic curves “Arnold’s principle”: smooth invariants for ( M , S ) via symplectic invariants of ( T ∗ M , N ∗ S / M S ) CS on ( S 3 , K ) ← → open A-model on ( T ∗ S 3 , N ∗ K / S 3 K ) [Witten ’92, Ooguri–Vafa ’99] At large ( N , k ) : CS on ( S 3 , K ) ← → open/closed A-model on ( X = Tot ( O ⊕ 2 ( − 1 ) P 1 ) , L K ) [Gopakumar–Vafa ’98, Ooguri–Vafa ’99] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 8 / 39

  2. Two stringy viewpoints on ω M 3 , K g , h Take A : counts of open holomorphic curves K = � : L K = L � = X σ , σ 2 = 1, σ ( ω ) = − ω . � N X , L � ( β, � d ) := d )] vir 1 g , h X , L � ( β,� [ M g , h [Katz–Liu, Li–Song ’01] � � GW X , L � N X , L � ( β, � d ) Q β � d := x g , h g , h � d ,β (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 8 / 39

  3. Two stringy viewpoints on ω M 3 , K g , h Take A : counts of open holomorphic curves K = � : L K = L � = X σ , σ 2 = 1, σ ( ω ) = − ω . � N X , L � ( β, � d ) := d )] vir 1 g , h X , L � ( β,� [ M g , h [Katz–Liu, Li–Song ’01] � d = ω S 3 , � � GW X , L � N X , L � ( β, � d ) Q β � := x g , h g , h g , h � d ,β (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 8 / 39

  4. Two stringy viewpoints on ω M 3 , K g , h Take B : spectral curves and the topological recursion (0, 1) (1, 1) �� �� � � v �� �� � � 2 v 1 v v 3 4 �� �� � (0, 0) (1, 0) Fan ( X ) = C (Π X ) Π X M 3 = S 3 , K = � : S � = ( V ( N (Π X )) , d log Y , d log X ) (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 9 / 39

  5. Two stringy viewpoints on ω M 3 , K g , h Take B : spectral curves and the topological recursion CEO 0 , 1 [ S � ] = log Y ( x ) X CEO 0 , 2 [ S � ] = B ( X 1 , X 2 ) CEO g , h [ S � ]   � �  CEO g − 1 , h + 1 +  = Res p K CEO [ S � ] CEO g − g ′ , h − h ′ CEO g ′ , h ′ g ′ , h ′ d X ( p )= 0 (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 9 / 39

  6. Two stringy viewpoints on ω M 3 , K g , h Take B : spectral curves and the topological recursion CEO 0 , 1 [ S � ] = log Y ( x ) = ω S 3 , � = GW X , L � 0 , 1 0 , 1 X = ω S 3 , � CEO 0 , 2 [ S � ] = B ( X 1 , X 2 ) = GW X , L � 0 , 2 0 , 2 CEO g , h [ S � ] = GW X , L � = ω S 3 , � g , h g , h   � �  CEO g − 1 , h + 1 +  = Res p K CEO [ S � ] CEO g − g ′ , h − h ′ CEO g ′ , h ′ g ′ , h ′ d X ( p )= 0 (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 9 / 39

  7. Two stringy viewpoints on ω M 3 , K g , h Take B : spectral curves and the topological recursion CEO 0 , 1 [ S � ] = log Y ( x ) = ω S 3 , � = GW X , L � 0 , 1 0 , 1 X = ω S 3 , � CEO 0 , 2 [ S � ] = B ( X 1 , X 2 ) = GW X , L � 0 , 2 0 , 2 CEO g , h [ S � ] = GW X , L � = ω S 3 , � g , h g , h   � �  CEO g − 1 , h + 1 +  = Res p K CEO [ S � ] CEO g − g ′ , h − h ′ CEO g ′ , h ′ g ′ , h ′ d X ( p )= 0 ( CEO g , 0 [ S � ] = GW g ( X ) ) (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 9 / 39

  8. Yeah but... ...this is just one (trivial) example! Want to: find viewpoint B for S 3 − → M 3 ? � − → K ? (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 10 / 39

  9. Yeah but... ...this is just one (trivial) example! Want to: find viewpoint B for S 3 − → M 3 ? � − → K ? (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 10 / 39

  10. Yeah but... ...this is just one (trivial) example! Want to: find viewpoint B for S 3 − → M 3 ? � − → K ? (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 10 / 39

  11. Yeah but... ...this is just one (trivial) example! Want to: find viewpoint B for S 3 − → M 3 ? � − → K ? (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 10 / 39

  12. Yeah but... ...this is just one (trivial) example! Want to: find viewpoint B for S 3 − → M 3 ? (in an arbitrary flat background) � − → K ? (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 10 / 39

  13. Part I: S 3 − → M 3 (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 11 / 39

  14. S 3 − → M 3 Take M 3 a Clifford–Klein 3-manifold: ∃ g | Ric ( g ) > 0 ⇔ M 3 ≃ S 3 / Γ , Γ ⊂ SO ( 4 ) . Examples: M 3 R P 3 Z / 2 Type A 1 : Γ = ⇒ ≃ M 3 I 120 ⇒ ≃ Type E 8 : Γ = Σ( 2 , 3 , 5 ) Find GW dual X Γ , if any. 1 Find spectral curve dual S Γ , if any. 2 Prove that large N duality, mirror symmetry, and the topological 3 recursion all hold true. (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 12 / 39

  15. S 3 − → M 3 Take M 3 a Clifford–Klein 3-manifold: ∃ g | Ric ( g ) > 0 ⇔ M 3 ≃ S 3 / Γ , Γ ⊂ SO ( 4 ) . Examples: M 3 R P 3 Z / 2 Type A 1 : Γ = ⇒ ≃ M 3 I 120 ⇒ ≃ Type E 8 : Γ = Σ( 2 , 3 , 5 ) Find GW dual X Γ , if any. 1 Find spectral curve dual S Γ , if any. 2 Prove that large N duality, mirror symmetry, and the topological 3 recursion all hold true. (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 12 / 39

  16. S 3 − → M 3 Take M 3 a Clifford–Klein 3-manifold: ∃ g | Ric ( g ) > 0 ⇔ M 3 ≃ S 3 / Γ , Γ ⊂ SO ( 4 ) . Examples: M 3 R P 3 Z / 2 Type A 1 : Γ = ⇒ ≃ M 3 I 120 ⇒ ≃ Type E 8 : Γ = Σ( 2 , 3 , 5 ) Find GW dual X Γ , if any. 1 Find spectral curve dual S Γ , if any. 2 Prove that large N duality, mirror symmetry, and the topological 3 recursion all hold true. (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 12 / 39

  17. S 3 − → M 3 Take M 3 a Clifford–Klein 3-manifold: ∃ g | Ric ( g ) > 0 ⇔ M 3 ≃ S 3 / Γ , Γ ⊂ SO ( 4 ) . Examples: M 3 R P 3 Z / 2 Type A 1 : Γ = ⇒ ≃ M 3 I 120 ⇒ ≃ Type E 8 : Γ = Σ( 2 , 3 , 5 ) Find GW dual X Γ , if any. 1 Find spectral curve dual S Γ , if any. 2 Prove that large N duality, mirror symmetry, and the topological 3 recursion all hold true. (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 12 / 39

  18. S 3 − → M 3 Take M 3 a Clifford–Klein 3-manifold: ∃ g | Ric ( g ) > 0 ⇔ M 3 ≃ S 3 / Γ , Γ ⊂ SO ( 4 ) . Examples: M 3 R P 3 Z / 2 Type A 1 : Γ = ⇒ ≃ M 3 I 120 ⇒ ≃ Type E 8 : Γ = Σ( 2 , 3 , 5 ) Find GW dual X Γ , if any. 1 Find spectral curve dual S Γ , if any. 2 Prove that large N duality, mirror symmetry, and the topological 3 recursion all hold true. (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 12 / 39

  19. S 3 − → M 3 Take M 3 a Clifford–Klein 3-manifold: ∃ g | Ric ( g ) > 0 ⇔ M 3 ≃ S 3 / Γ , Γ ⊂ SO ( 4 ) . Examples: M 3 R P 3 Z / 2 Type A 1 : Γ = ⇒ ≃ M 3 I 120 ⇒ ≃ Type E 8 : Γ = Σ( 2 , 3 , 5 ) Find GW dual X Γ , if any. 1 Find spectral curve dual S Γ , if any. 2 Prove that large N duality, mirror symmetry, and the topological 3 recursion all hold true. (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 12 / 39

  20. S 3 − → M 3 Take M 3 a Clifford–Klein 3-manifold: ∃ g | Ric ( g ) > 0 ⇔ M 3 ≃ S 3 / Γ , Γ ⊂ SO ( 4 ) . Examples: M 3 R P 3 Z / 2 Type A 1 : Γ = ⇒ ≃ M 3 I 120 ⇒ ≃ Type E 8 : Γ = Σ( 2 , 3 , 5 ) Find GW dual X Γ , if any. 1 Find spectral curve dual S Γ , if any. 2 Prove that large N duality, mirror symmetry, and the topological 3 recursion all hold true. (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 12 / 39

  21. The quest large N ? ✲ U ( N ) CS on S Γ A -model on...? ❃ ✚ ✻ ✚ ✚ ✚ ? ✚ y r t ✚ e m ✚ m y ✚ Vir-type s r o ✚ constraints? r r i m ✚ ✚ ✚ ✚ ✚ ✚ ❂ ✚ B -model on...? (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 13 / 39

  22. S 3 − → M 3 : A-side Geometric transition: V ( x 1 x 4 − x 2 x 3 ) ⊂ A 4 � ❅ � ❅ deform resolve � ❅ � ❅ � ❅ � ❅ � ❅ ✠ � ❅ ❘ � X ≃ T ∗ S 3 X = O ⊕ 2 P 1 ( − 1 ) (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 14 / 39

  23. S 3 − → M 3 : A-side Geometric transition: V ( x 1 x 4 − x 2 x 3 ) / Γ � ❅ � ❅ deform resolve � ❅ � ❅ � ❅ � ❅ � ❅ ✠ � ❅ ❘ � X ≃ T ∗ S Γ X orb = [ O ⊕ 2 P 1 ( − 1 ) / Γ] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 15 / 39

  24. S 3 − → M 3 : A-side Remarks [ many things are well defined ]: Γ action is fiberwise 1 X Γ supports a C ⋆ -Calabi–Yau action with compact fixed loci 2 ∃ canonical Lagrangians L Γ ⊂ X Γ ( ⇒ open (orbifold) GW 3 invariants) [Katz–Liu ’01, AB–Cavalieri ’10] orientifold constructions carry through ( SO ( N ) / Sp ( N ) ) 4 [Sinha–Vafa ’00] By (2) above, for Γ � = Z / p Z , X Γ is non toric ⇒ no Hori-Iqbal-Vafa, no obvious mirror spectral curve (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 16 / 39

  25. Duality web large N ? ✲ U ( N ) CS on S Γ A -model on X Γ ✚ ❃ ✻ ✚ ✚ ✚ ? ✚ y r t ✚ e m ✚ m y ✚ Vir-type s geometric r o ✚ constraints? r engineering r i m ✚ ✚ ✚ ✚ ✚ ✚ ✚ ❂ ❄ N = 1 ( G Γ , ∅ ) B -model on...? SYM in d = 5 (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 17 / 39

  26. Duality web large N ? ✲ U ( N ) CS on S Γ A -model on X Γ ✚ ❃ ✻ ✚ ✚ ✚ ? ✚ y r t ✚ e m ✚ m y ✚ loop s geometric r o ✚ equations r engineering r i m ✚ ✚ ✚ ✚ ✚ ✚ ❂ ✚ ❄ ✛ N = 1 ( G Γ , ∅ ) B -model on relativistic � SW/IS correspondence SYM in d = 5 G Γ -Toda (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 18 / 39

  27. G Γ / � G Γ -relativistic Toda Phase space: P Γ ≃ ( C ⋆ ) r Γ x × ( C ⋆ ) r Γ y , { x i , y j } = C Γ ij x i y j Dynamics: L : ( P , { , } ) → ( G Γ / T Γ , { , } DJOV ) {L ∗ H i , L ∗ H j } = 0 , H i ∈ O ( G Γ ) G Γ . Type A: non-periodic/periodic Ruijsenaars system [Fock–Marshakov ’97-’14, Williams ’12, Kruglinskaya–Marshakov ’14] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 19 / 39

  28. G Γ / � G Γ -relativistic Toda Phase space: P Γ ≃ ( C ⋆ ) r Γ x × ( C ⋆ ) r Γ y , { x i , y j } = C Γ ij x i y j Dynamics: L : ( P , { , } ) → ( G Γ / T Γ , { , } DJOV ) {L ∗ H i , L ∗ H j } = 0 , H i ∈ O ( G Γ ) G Γ . Type A: non-periodic/periodic Ruijsenaars system [Fock–Marshakov ’97-’14, Williams ’12, Kruglinskaya–Marshakov ’14] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 19 / 39

  29. G Γ / � G Γ -relativistic Toda Phase space: P Γ ≃ ( C ⋆ ) r Γ x × ( C ⋆ ) r Γ y , { x i , y j } = C Γ ij x i y j Dynamics: L : ( P , { , } ) → ( G Γ / T Γ , { , } DJOV ) {L ∗ H i , L ∗ H j } = 0 , H i ∈ O ( G Γ ) G Γ . Type A: non-periodic/periodic Ruijsenaars system [Fock–Marshakov ’97-’14, Williams ’12, Kruglinskaya–Marshakov ’14] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 19 / 39

  30. G Γ / � G Γ -relativistic Toda Phase space: P Γ ≃ ( C ⋆ ) r Γ x × ( C ⋆ ) r Γ y , { x i , y j } = C Γ ij x i y j Dynamics: L : ( P , { , } ) → ( G Γ / T Γ , { , } DJOV ) {L ∗ H i , L ∗ H j } = 0 , H i ∈ O ( G Γ ) G Γ . Type A: non-periodic/periodic Ruijsenaars system [Fock–Marshakov ’97-’14, Williams ’12, Kruglinskaya–Marshakov ’14] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 19 / 39

  31. G Γ / � G Γ -relativistic Toda Phase space: P Γ ≃ ( C ⋆ ) r Γ x × ( C ⋆ ) r Γ y , { x i , y j } = C Γ ij x i y j Dynamics: L : ( P , { , } ) → ( G Γ / T Γ , { , } DJOV ) {L ∗ H i , L ∗ H j } = 0 , H i ∈ O ( G Γ ) G Γ . Type A: non-periodic/periodic Ruijsenaars system [Fock–Marshakov ’97-’14, Williams ’12, Kruglinskaya–Marshakov ’14] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 19 / 39

  32. G Γ / � G Γ -relativistic Toda Phase space: P Γ ≃ ( C ⋆ ) r Γ x × ( C ⋆ ) r Γ y , { x i , y j } = C Γ ij x i y j Dynamics: L : ( P , { , } ) → ( G Γ / T Γ , { , } DJOV ) {L ∗ H i , L ∗ H j } = 0 , H i ∈ O ( G Γ ) G Γ . Type A: non-periodic/periodic Ruijsenaars system [Fock–Marshakov ’97-’14, Williams ’12, Kruglinskaya–Marshakov ’14] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 19 / 39

  33. Relativistic Toda Γ spectral curves Toda Γ = ( C Γ , L , Ω 1 , Ω 2 ) , with: ρ � = 1 ∈ Rep ( G Γ ) : 1 P Γ ,ρ � det ρ ( µ id − L ( λ )) ∈ Z [ µ ][ Tr ω 1 L ( λ ) , . . . , Tr ω r Γ L ( λ )] . C Γ = {P Γ ,ρ = 0 } ; 2 ∃ a canonical correspondence on C Γ , lifting to projectors 3 π 1 : Pic ( 0 ) ( C Γ ) → T Γ and π 2 : H 1 ( C Γ , Z ) → L ; motion linearises on T Γ . [Kanev ’87, Donagi ’88, McDaniel–Smolinsky ’92-97, Martinec–Warner ’95] Spectral differentials: (Ω 1 , Ω 2 ) = ( d log λ, d log µ ) . 4 [Krichever–Phong ’96-’97, D’Hoker–Krichever–Phong ’02] � � λ + C Also: Tr ω i L ( λ ) = u i + δ i , ¯ , C = Casimir . Problem completely 5 i λ solved by determining ∧ n ρ = p n , Γ ( ρ ω 1 , . . . , ρ ω r Γ ) ∈ Rep ( G Γ ) . (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 20 / 39

  34. Relativistic Toda Γ spectral curves Toda Γ = ( C Γ , L , Ω 1 , Ω 2 ) , with: ρ � = 1 ∈ Rep ( G Γ ) : 1 P Γ ,ρ � det ρ ( µ id − L ( λ )) ∈ Z [ µ ][ Tr ω 1 L ( λ ) , . . . , Tr ω r Γ L ( λ )] . C Γ = {P Γ ,ρ = 0 } ; 2 ∃ a canonical correspondence on C Γ , lifting to projectors 3 π 1 : Pic ( 0 ) ( C Γ ) → T Γ and π 2 : H 1 ( C Γ , Z ) → L ; motion linearises on T Γ . [Kanev ’87, Donagi ’88, McDaniel–Smolinsky ’92-97, Martinec–Warner ’95] Spectral differentials: (Ω 1 , Ω 2 ) = ( d log λ, d log µ ) . 4 [Krichever–Phong ’96-’97, D’Hoker–Krichever–Phong ’02] � � λ + C Also: Tr ω i L ( λ ) = u i + δ i , ¯ , C = Casimir . Problem completely 5 i λ solved by determining ∧ n ρ = p n , Γ ( ρ ω 1 , . . . , ρ ω r Γ ) ∈ Rep ( G Γ ) . (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 20 / 39

  35. Relativistic Toda Γ spectral curves Toda Γ = ( C Γ , L , Ω 1 , Ω 2 ) , with: ρ � = 1 ∈ Rep ( G Γ ) : 1 P Γ ,ρ � det ρ ( µ id − L ( λ )) ∈ Z [ µ ][ Tr ω 1 L ( λ ) , . . . , Tr ω r Γ L ( λ )] . C Γ = {P Γ ,ρ = 0 } ; 2 ∃ a canonical correspondence on C Γ , lifting to projectors 3 π 1 : Pic ( 0 ) ( C Γ ) → T Γ and π 2 : H 1 ( C Γ , Z ) → L ; motion linearises on T Γ . [Kanev ’87, Donagi ’88, McDaniel–Smolinsky ’92-97, Martinec–Warner ’95] Spectral differentials: (Ω 1 , Ω 2 ) = ( d log λ, d log µ ) . 4 [Krichever–Phong ’96-’97, D’Hoker–Krichever–Phong ’02] � � λ + C Also: Tr ω i L ( λ ) = u i + δ i , ¯ , C = Casimir . Problem completely 5 i λ solved by determining ∧ n ρ = p n , Γ ( ρ ω 1 , . . . , ρ ω r Γ ) ∈ Rep ( G Γ ) . (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 20 / 39

  36. Relativistic Toda Γ spectral curves Toda Γ = ( C Γ , L , Ω 1 , Ω 2 ) , with: ρ � = 1 ∈ Rep ( G Γ ) : 1 P Γ ,ρ � det ρ ( µ id − L ( λ )) ∈ Z [ µ ][ Tr ω 1 L ( λ ) , . . . , Tr ω r Γ L ( λ )] . C Γ = {P Γ ,ρ = 0 } ; 2 ∃ a canonical correspondence on C Γ , lifting to projectors 3 π 1 : Pic ( 0 ) ( C Γ ) → T Γ and π 2 : H 1 ( C Γ , Z ) → L ; motion linearises on T Γ . [Kanev ’87, Donagi ’88, McDaniel–Smolinsky ’92-97, Martinec–Warner ’95] Spectral differentials: (Ω 1 , Ω 2 ) = ( d log λ, d log µ ) . 4 [Krichever–Phong ’96-’97, D’Hoker–Krichever–Phong ’02] � � λ + C Also: Tr ω i L ( λ ) = u i + δ i , ¯ , C = Casimir . Problem completely 5 i λ solved by determining ∧ n ρ = p n , Γ ( ρ ω 1 , . . . , ρ ω r Γ ) ∈ Rep ( G Γ ) . (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 20 / 39

  37. Relativistic Toda Γ spectral curves Toda Γ = ( C Γ , L , Ω 1 , Ω 2 ) , with: ρ � = 1 ∈ Rep ( G Γ ) : 1 P Γ ,ρ � det ρ ( µ id − L ( λ )) ∈ Z [ µ ][ Tr ω 1 L ( λ ) , . . . , Tr ω r Γ L ( λ )] . C Γ = {P Γ ,ρ = 0 } ; 2 ∃ a canonical correspondence on C Γ , lifting to projectors 3 π 1 : Pic ( 0 ) ( C Γ ) → T Γ and π 2 : H 1 ( C Γ , Z ) → L ; motion linearises on T Γ . [Kanev ’87, Donagi ’88, McDaniel–Smolinsky ’92-97, Martinec–Warner ’95] Spectral differentials: (Ω 1 , Ω 2 ) = ( d log λ, d log µ ) . 4 [Krichever–Phong ’96-’97, D’Hoker–Krichever–Phong ’02] � � λ + C Also: Tr ω i L ( λ ) = u i + δ i , ¯ , C = Casimir . Problem completely 5 i λ solved by determining ∧ n ρ = p n , Γ ( ρ ω 1 , . . . , ρ ω r Γ ) ∈ Rep ( G Γ ) . (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 20 / 39

  38. Relativistic Toda Γ spectral curves Toda Γ = ( C Γ , L , Ω 1 , Ω 2 ) , with: ρ � = 1 ∈ Rep ( G Γ ) : 1 P Γ ,ρ � det ρ ( µ id − L ( λ )) ∈ Z [ µ ][ Tr ω 1 L ( λ ) , . . . , Tr ω r Γ L ( λ )] . C Γ = {P Γ ,ρ = 0 } ; 2 ∃ a canonical correspondence on C Γ , lifting to projectors 3 π 1 : Pic ( 0 ) ( C Γ ) → T Γ and π 2 : H 1 ( C Γ , Z ) → L ; motion linearises on T Γ . [Kanev ’87, Donagi ’88, McDaniel–Smolinsky ’92-97, Martinec–Warner ’95] Spectral differentials: (Ω 1 , Ω 2 ) = ( d log λ, d log µ ) . 4 [Krichever–Phong ’96-’97, D’Hoker–Krichever–Phong ’02] � � λ + C Also: Tr ω i L ( λ ) = u i + δ i , ¯ , C = Casimir . Problem completely 5 i λ solved by determining ∧ n ρ = p n , Γ ( ρ ω 1 , . . . , ρ ω r Γ ) ∈ Rep ( G Γ ) . (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 20 / 39

  39. Relativistic Toda Γ spectral curves Toda Γ = ( C Γ , L , Ω 1 , Ω 2 ) , with: ρ � = 1 ∈ Rep ( G Γ ) : 1 P Γ ,ρ � det ρ ( µ id − L ( λ )) ∈ Z [ µ ][ Tr ω 1 L ( λ ) , . . . , Tr ω r Γ L ( λ )] . C Γ = {P Γ ,ρ = 0 } ; 2 ∃ a canonical correspondence on C Γ , lifting to projectors 3 π 1 : Pic ( 0 ) ( C Γ ) → T Γ and π 2 : H 1 ( C Γ , Z ) → L ; motion linearises on T Γ . [Kanev ’87, Donagi ’88, McDaniel–Smolinsky ’92-97, Martinec–Warner ’95] Spectral differentials: (Ω 1 , Ω 2 ) = ( d log λ, d log µ ) . 4 [Krichever–Phong ’96-’97, D’Hoker–Krichever–Phong ’02] � � λ + C Also: Tr ω i L ( λ ) = u i + δ i , ¯ , C = Casimir . Problem completely 5 i λ solved by determining ∧ n ρ = p n , Γ ( ρ ω 1 , . . . , ρ ω r Γ ) ∈ Rep ( G Γ ) . (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 20 / 39

  40. Relativistic Toda Γ spectral curves Toda Γ = ( C Γ , L , Ω 1 , Ω 2 ) , with: ρ � = 1 ∈ Rep ( G Γ ) : 1 P Γ ,ρ � det ρ ( µ id − L ( λ )) ∈ Z [ µ ][ Tr ω 1 L ( λ ) , . . . , Tr ω r Γ L ( λ )] . C Γ = {P Γ ,ρ = 0 } ; 2 ∃ a canonical correspondence on C Γ , lifting to projectors 3 π 1 : Pic ( 0 ) ( C Γ ) → T Γ and π 2 : H 1 ( C Γ , Z ) → L ; motion linearises on T Γ . [Kanev ’87, Donagi ’88, McDaniel–Smolinsky ’92-97, Martinec–Warner ’95] Spectral differentials: (Ω 1 , Ω 2 ) = ( d log λ, d log µ ) . 4 [Krichever–Phong ’96-’97, D’Hoker–Krichever–Phong ’02] � � λ + C Also: Tr ω i L ( λ ) = u i + δ i , ¯ , C = Casimir . Problem completely 5 i λ solved by determining ∧ n ρ = p n , Γ ( ρ ω 1 , . . . , ρ ω r Γ ) ∈ Rep ( G Γ ) . (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 20 / 39

  41. Relativistic Toda Γ spectral curves Toda Γ = ( C Γ , L , Ω 1 , Ω 2 ) , with: ρ � = 1 ∈ Rep ( G Γ ) : 1 P Γ ,ρ � det ρ ( µ id − L ( λ )) ∈ Z [ µ ][ Tr ω 1 L ( λ ) , . . . , Tr ω r Γ L ( λ )] . C Γ = {P Γ ,ρ = 0 } ; 2 ∃ a canonical correspondence on C Γ , lifting to projectors 3 π 1 : Pic ( 0 ) ( C Γ ) → T Γ and π 2 : H 1 ( C Γ , Z ) → L ; motion linearises on T Γ . [Kanev ’87, Donagi ’88, McDaniel–Smolinsky ’92-97, Martinec–Warner ’95] Spectral differentials: (Ω 1 , Ω 2 ) = ( d log λ, d log µ ) . 4 [Krichever–Phong ’96-’97, D’Hoker–Krichever–Phong ’02] � � λ + C Also: Tr ω i L ( λ ) = u i + δ i , ¯ , C = Casimir . Problem completely 5 i λ solved by determining ∧ n ρ = p n , Γ ( ρ ω 1 , . . . , ρ ω r Γ ) ∈ Rep ( G Γ ) . (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 20 / 39

  42. Relativistic Toda Γ spectral curves Toda Γ = ( C Γ , L , Ω 1 , Ω 2 ) , with: ρ � = 1 ∈ Rep ( G Γ ) : 1 P Γ ,ρ � det ρ ( µ id − L ( λ )) ∈ Z [ µ ][ Tr ω 1 L ( λ ) , . . . , Tr ω r Γ L ( λ )] . C Γ = {P Γ ,ρ = 0 } ; 2 ∃ a canonical correspondence on C Γ , lifting to projectors 3 π 1 : Pic ( 0 ) ( C Γ ) → T Γ and π 2 : H 1 ( C Γ , Z ) → L ; motion linearises on T Γ . [Kanev ’87, Donagi ’88, McDaniel–Smolinsky ’92-97, Martinec–Warner ’95] Spectral differentials: (Ω 1 , Ω 2 ) = ( d log λ, d log µ ) . 4 [Krichever–Phong ’96-’97, D’Hoker–Krichever–Phong ’02] � � λ + C Also: Tr ω i L ( λ ) = u i + δ i , ¯ , C = Casimir . Problem completely 5 i λ solved by determining ∧ n ρ = p n , Γ ( ρ ω 1 , . . . , ρ ω r Γ ) ∈ Rep ( G Γ ) . (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 20 / 39

  43. ADE 6 , 7 Problem is trivial in type A n ( ρ = � ) , a back-of-the-envelope calculation for type D n ( ρ = ( 2n v ) ), and computable in reasonably short time on Mathematica for ( E 6 , 27 ) (runtime: 30mins) and ( E 7 , 56 ) (1/2 day). (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 21 / 39

  44. Toda Γ spectral curves: type A 15 10 5 1 −1 (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 22 / 39

  45. Toda Γ spectral curves: type D 15 10 5 1 −1 (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 23 / 39

  46. Toda Γ spectral curves: type E 6 25 20 15 10 5 −2 −1 0 1 2 (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 24 / 39

  47. Toda Γ spectral curves: type E 7 50 40 30 20 10 −2 −1 0 1 2 3 −3 (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 25 / 39

  48. E 8 ( E 8 , ρ = e 8 ) is completely unwieldy at face value, but it’s related to the Poincaré sphere, it’s immoral to leave anyone behind, and particularly frustrating when the most exceptional case is kept untreated. ∃ there’s a semi-numerical way to break up the computation into a big number of smaller pieces of at most the size of the E 7 problem. Runtime grand total: 110 months, however code is easily “parallelisable”. With N ≃ 75 cores at once, this was reduced to about 1.5 months on a couple of small departmental clusters; see tiny.cc/E8Char (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 26 / 39

  49. E 8 ( E 8 , ρ = e 8 ) is completely unwieldy at face value, but it’s related to the Poincaré sphere, it’s immoral to leave anyone behind, and particularly frustrating when the most exceptional case is kept untreated. ∃ there’s a semi-numerical way to break up the computation into a big number of smaller pieces of at most the size of the E 7 problem. Runtime grand total: 110 months, however code is easily “parallelisable”. With N ≃ 75 cores at once, this was reduced to about 1.5 months on a couple of small departmental clusters; see tiny.cc/E8Char (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 26 / 39

  50. E 8 ( E 8 , ρ = e 8 ) is completely unwieldy at face value, but it’s related to the Poincaré sphere, it’s immoral to leave anyone behind, and particularly frustrating when the most exceptional case is kept untreated. ∃ there’s a semi-numerical way to break up the computation into a big number of smaller pieces of at most the size of the E 7 problem. Runtime grand total: 110 months, however code is easily “parallelisable”. With N ≃ 75 cores at once, this was reduced to about 1.5 months on a couple of small departmental clusters; see tiny.cc/E8Char (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 26 / 39

  51. Toda Γ spectral curves: type E 8 250 200 150 100 50 0 −5 5 (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 27 / 39

  52. At the end of the day... Theorem (Borot–AB ( ADE 6 , 7 ), AB ( E 8 )) The B-model Gopakumar–Vafa duality holds in all genera for Clifford–Klein 3-manifolds in a reducible flat background – and for them alone. (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  53. At the end of the day... SOTP: CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model ∃ P CS ∈ C [ x , y ] | P CS ( z , ω S 3 / Γ 0 , 1 ( z )) = 0 [AB-Eynard–Mariño ’11, Borot–Eynard ’14, Borot-AB ’15, AB ’17] P CS = det ( µ − L ( λ )) | u ( t ) ⇒ ω S 3 / Γ = CEO 0 , 1 [ Toda Γ ] 0 , 1 [Borot-AB ’15, AB ’17] ω S 3 / Γ = CEO 0 , 2 [ Toda Γ ] 0 , 2 ⇒ all genus/colorings Extra sphaericos nulla salus (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  54. At the end of the day... SOTP: CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model ∃ P CS ∈ C [ x , y ] | P CS ( z , ω S 3 / Γ 0 , 1 ( z )) = 0 [AB-Eynard–Mariño ’11, Borot–Eynard ’14, Borot-AB ’15, AB ’17] P CS = det ( µ − L ( λ )) | u ( t ) ⇒ ω S 3 / Γ = CEO 0 , 1 [ Toda Γ ] 0 , 1 [Borot-AB ’15, AB ’17] ω S 3 / Γ = CEO 0 , 2 [ Toda Γ ] 0 , 2 ⇒ all genus/colorings Extra sphaericos nulla salus (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  55. At the end of the day... SOTP: CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model ∃ P CS ∈ C [ x , y ] | P CS ( z , ω S 3 / Γ 0 , 1 ( z )) = 0 [AB-Eynard–Mariño ’11, Borot–Eynard ’14, Borot-AB ’15, AB ’17] P CS = det ( µ − L ( λ )) | u ( t ) ⇒ ω S 3 / Γ = CEO 0 , 1 [ Toda Γ ] 0 , 1 [Borot-AB ’15, AB ’17] ω S 3 / Γ = CEO 0 , 2 [ Toda Γ ] 0 , 2 ⇒ all genus/colorings Extra sphaericos nulla salus (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  56. At the end of the day... SOTP: CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model ∃ P CS ∈ C [ x , y ] | P CS ( z , ω S 3 / Γ 0 , 1 ( z )) = 0 [AB-Eynard–Mariño ’11, Borot–Eynard ’14, Borot-AB ’15, AB ’17] P CS = det ( µ − L ( λ )) | u ( t ) ⇒ ω S 3 / Γ = CEO 0 , 1 [ Toda Γ ] 0 , 1 [Borot-AB ’15, AB ’17] ω S 3 / Γ = CEO 0 , 2 [ Toda Γ ] 0 , 2 ⇒ all genus/colorings Extra sphaericos nulla salus (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  57. At the end of the day... SOTP: CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model ∃ P CS ∈ C [ x , y ] | P CS ( z , ω S 3 / Γ 0 , 1 ( z )) = 0 [AB-Eynard–Mariño ’11, Borot–Eynard ’14, Borot-AB ’15, AB ’17] P CS = det ( µ − L ( λ )) | u ( t ) ⇒ ω S 3 / Γ = CEO 0 , 1 [ Toda Γ ] 0 , 1 [Borot-AB ’15, AB ’17] ω S 3 / Γ = CEO 0 , 2 [ Toda Γ ] 0 , 2 ⇒ all genus/colorings Extra sphaericos nulla salus (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  58. At the end of the day... SOTP: CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model ∃ P CS ∈ C [ x , y ] | P CS ( z , ω S 3 / Γ 0 , 1 ( z )) = 0 [AB-Eynard–Mariño ’11, Borot–Eynard ’14, Borot-AB ’15, AB ’17] P CS = det ( µ − L ( λ )) | u ( t ) ⇒ ω S 3 / Γ = CEO 0 , 1 [ Toda Γ ] 0 , 1 [Borot-AB ’15, AB ’17] ω S 3 / Γ = CEO 0 , 2 [ Toda Γ ] 0 , 2 ⇒ all genus/colorings Extra sphaericos nulla salus (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  59. At the end of the day... SOTP: CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model ∃ P CS ∈ C [ x , y ] | P CS ( z , ω S 3 / Γ 0 , 1 ( z )) = 0 [AB-Eynard–Mariño ’11, Borot–Eynard ’14, Borot-AB ’15, AB ’17] P CS = det ( µ − L ( λ )) | u ( t ) ⇒ ω S 3 / Γ = CEO 0 , 1 [ Toda Γ ] 0 , 1 [Borot-AB ’15, AB ’17] ω S 3 / Γ = CEO 0 , 2 [ Toda Γ ] 0 , 2 ⇒ all genus/colorings Extra sphaericos nulla salus (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  60. At the end of the day... SOTP: CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model ∃ P CS ∈ C [ x , y ] | P CS ( z , ω S 3 / Γ 0 , 1 ( z )) = 0 [AB-Eynard–Mariño ’11, Borot–Eynard ’14, Borot-AB ’15, AB ’17] P CS = det ( µ − L ( λ )) | u ( t ) ⇒ ω S 3 / Γ = CEO 0 , 1 [ Toda Γ ] 0 , 1 [Borot-AB ’15, AB ’17] ω S 3 / Γ = CEO 0 , 2 [ Toda Γ ] 0 , 2 ⇒ all genus/colorings Extra sphaericos nulla salus (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  61. At the end of the day... SOTP: CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model ∃ P CS ∈ C [ x , y ] | P CS ( z , ω S 3 / Γ 0 , 1 ( z )) = 0 [AB-Eynard–Mariño ’11, Borot–Eynard ’14, Borot-AB ’15, AB ’17] P CS = det ( µ − L ( λ )) | u ( t ) ⇒ ω S 3 / Γ = CEO 0 , 1 [ Toda Γ ] 0 , 1 [Borot-AB ’15, AB ’17] ω S 3 / Γ = CEO 0 , 2 [ Toda Γ ] 0 , 2 ⇒ all genus/colorings Extra sphaericos nulla salus (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  62. At the end of the day... SOTP: CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model ∃ P CS ∈ C [ x , y ] | P CS ( z , ω S 3 / Γ 0 , 1 ( z )) = 0 [AB-Eynard–Mariño ’11, Borot–Eynard ’14, Borot-AB ’15, AB ’17] P CS = det ( µ − L ( λ )) | u ( t ) ⇒ ω S 3 / Γ = CEO 0 , 1 [ Toda Γ ] 0 , 1 [Borot-AB ’15, AB ’17] ω S 3 / Γ = CEO 0 , 2 [ Toda Γ ] 0 , 2 ⇒ all genus/colorings Extra sphaericos nulla salus (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  63. At the end of the day... SOTP: CS on Seifert manifolds reduces to a trigonometric (multi-)eigenvalue model ∃ P CS ∈ C [ x , y ] | P CS ( z , ω S 3 / Γ 0 , 1 ( z )) = 0 [AB-Eynard–Mariño ’11, Borot–Eynard ’14, Borot-AB ’15, AB ’17] P CS = det ( µ − L ( λ )) | u ( t ) ⇒ ω S 3 / Γ = CEO 0 , 1 [ Toda Γ ] 0 , 1 [Borot-AB ’15, AB ’17] ω S 3 / Γ = CEO 0 , 2 [ Toda Γ ] 0 , 2 ⇒ all genus/colorings Extra sphaericos nulla salus (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 28 / 39

  64. Application: mirrors of DZ Frobenius manifolds Two meaningful operations: replace Ω 1 = d log λ → d λ (Dubrovin’s almost duality) 1 restrict to degenerate leaf C → 0 2 Combining both: bona-fide (conformal, with flat-unit) FM structure F Γ Toda on a suitable Hurwitz space. Dubrovin–Zhang constructed Frobenius structures on orbit spaces of affine Weyl groups. The resulting Frobenius manifold depends furthermore on a choice of a marked simple root of g Γ . [Dubrovin–Zhang ’96-’97] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 29 / 39

  65. Application: mirrors of DZ Frobenius manifolds Two meaningful operations: replace Ω 1 = d log λ → d λ (Dubrovin’s almost duality) 1 restrict to degenerate leaf C → 0 2 Combining both: bona-fide (conformal, with flat-unit) FM structure F Γ Toda on a suitable Hurwitz space. Dubrovin–Zhang constructed Frobenius structures on orbit spaces of affine Weyl groups. The resulting Frobenius manifold depends furthermore on a choice of a marked simple root of g Γ . [Dubrovin–Zhang ’96-’97] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 29 / 39

  66. Theorem For all simple Lie groups, we have F Γ Toda ≃ DZ ( Weyl Γ ) 1 choices of marked root in DZ correspond to choices of dual 2 marked fundamental weights in F Γ Toda for simply-laced Γ and canonical choice of roots, 3 F Γ Toda ≃ QH orb ( P 1 Γ ) [Rossi ’08, Zaslow ’92] the higher genus GW potential of P 1 Γ coincides with the CEO 4 higher genus free energies on F Γ Toda . Upon reversing Dubrovin’s almost duality on the same leaf: Toda ≃ QH orb ([ C 2 / Γ]) ≃ QH ( � � F Γ C 2 / Γ) (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 30 / 39

  67. Part II: � − → K (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 31 / 39

  68. B-model for K The aim: Recall that for K = � , the full set of quantum invariants of the unknot were computed from the rational version of the topological recursion: ω S 3 , � = CEO g , h [ S � ] g , h Ideally, we’d like to have exactly the same for all knots. (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 32 / 39

  69. B-model for K Four things we know/expect: spectral curves : 1-dimensional mirrors S K via the knot DGA and 1 the augmentation polynomial of K : → Aug K ∈ Z [ X , Y , Q ] N X (Π) = 1 − X − Y + QXY − [Aganagic–Vafa ’12, AENV ’13, Ng ’04] topological recursion : open/closed B-model on conic bundles 2 zw = P ( X , Y ) ∈ C 2 × ( C ∗ ) 2 solved by Eynard–Orantin recursion; [BKMP ’07, Dijkgraaf–Vafa ’08, Gu–Jockers–Klemm–Soroush ’14] the closed sector : CEO g , 0 [ S K ] = GW g ( X ) regardless of K ; 3 [GJKS ’14] symplectic invariance : if φ : (( C ⋆ ) 2 , ω ) → (( C ⋆ ) 2 , ω ) is 4 symplectic, then CEO g , 0 [ S ] = CEO g , 0 [ φ ∗ S ] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 33 / 39

  70. B-model for K Four things we know/expect: spectral curves : 1-dimensional mirrors S K via the knot DGA and 1 the augmentation polynomial of K : → Aug K ∈ Z [ X , Y , Q ] N X (Π) = 1 − X − Y + QXY − [Aganagic–Vafa ’12, AENV ’13, Ng ’04] topological recursion : open/closed B-model on conic bundles 2 zw = P ( X , Y ) ∈ C 2 × ( C ∗ ) 2 solved by Eynard–Orantin recursion; [BKMP ’07, Dijkgraaf–Vafa ’08, Gu–Jockers–Klemm–Soroush ’14] the closed sector : CEO g , 0 [ S K ] = GW g ( X ) regardless of K ; 3 [GJKS ’14] symplectic invariance : if φ : (( C ⋆ ) 2 , ω ) → (( C ⋆ ) 2 , ω ) is 4 symplectic, then CEO g , 0 [ S ] = CEO g , 0 [ φ ∗ S ] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 33 / 39

  71. B-model for K Four things we know/expect: spectral curves : 1-dimensional mirrors S K via the knot DGA and 1 the augmentation polynomial of K : → Aug K ∈ Z [ X , Y , Q ] N X (Π) = 1 − X − Y + QXY − [Aganagic–Vafa ’12, AENV ’13, Ng ’04] topological recursion : open/closed B-model on conic bundles 2 zw = P ( X , Y ) ∈ C 2 × ( C ∗ ) 2 solved by Eynard–Orantin recursion; [BKMP ’07, Dijkgraaf–Vafa ’08, Gu–Jockers–Klemm–Soroush ’14] the closed sector : CEO g , 0 [ S K ] = GW g ( X ) regardless of K ; 3 [GJKS ’14] symplectic invariance : if φ : (( C ⋆ ) 2 , ω ) → (( C ⋆ ) 2 , ω ) is 4 symplectic, then CEO g , 0 [ S ] = CEO g , 0 [ φ ∗ S ] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 33 / 39

  72. B-model for K Four things we know/expect: spectral curves : 1-dimensional mirrors S K via the knot DGA and 1 the augmentation polynomial of K : → Aug K ∈ Z [ X , Y , Q ] N X (Π) = 1 − X − Y + QXY − [Aganagic–Vafa ’12, AENV ’13, Ng ’04] topological recursion : open/closed B-model on conic bundles 2 zw = P ( X , Y ) ∈ C 2 × ( C ∗ ) 2 solved by Eynard–Orantin recursion; [BKMP ’07, Dijkgraaf–Vafa ’08, Gu–Jockers–Klemm–Soroush ’14] the closed sector : CEO g , 0 [ S K ] = GW g ( X ) regardless of K ; 3 [GJKS ’14] symplectic invariance : if φ : (( C ⋆ ) 2 , ω ) → (( C ⋆ ) 2 , ω ) is 4 symplectic, then CEO g , 0 [ S ] = CEO g , 0 [ φ ∗ S ] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 33 / 39

  73. B-model for K Four things we know/expect: spectral curves : 1-dimensional mirrors S K via the knot DGA and 1 the augmentation polynomial of K : → Aug K ∈ Z [ X , Y , Q ] N X (Π) = 1 − X − Y + QXY − [Aganagic–Vafa ’12, AENV ’13, Ng ’04] topological recursion : open/closed B-model on conic bundles 2 zw = P ( X , Y ) ∈ C 2 × ( C ∗ ) 2 solved by Eynard–Orantin recursion; [BKMP ’07, Dijkgraaf–Vafa ’08, Gu–Jockers–Klemm–Soroush ’14] the closed sector : CEO g , 0 [ S K ] = GW g ( X ) regardless of K ; 3 [GJKS ’14] symplectic invariance : if φ : (( C ⋆ ) 2 , ω ) → (( C ⋆ ) 2 , ω ) is 4 symplectic, then CEO g , 0 [ S ] = CEO g , 0 [ φ ∗ S ] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 33 / 39

  74. The Main Conjecture (crude form) Piecing everything together... Conjecture There exists a set-theoretic correspondence K → φ K ∈ SCr ( 2 ) (the symplectic Cremona group of the plane ) such that ω K g , h = CEO g , h [ φ ∗ K N (Π X )] ( ⋆ ) (cfr: mutations of LG potentials) [Galkin–Usnich ’10, Akhtar–Coates–Galkin–Kasprzyk ’13] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 34 / 39

  75. The symplectic Cremona group of the plane Let ω = d log X ∧ log Y be the standard holomorphic symplectic form on the 2-torus. CP 2 Cr ( 2 ) = Aut C ( C ( X , Y )) : → ∨ ֒ (( C ∗ ) 2 , ω ) SCr ( 2 ) = { φ ∈ Cr ( 2 ) | φ ∗ ω = ω } : � �� � ∨ � � ( C ⋆ ) 2 , SL 2 ( Z ) , Z / 5 = � P � � � SL 2 ( Z ) = � C , I | C 3 = I 4 = 1 , I 2 C = CI 2 � , P : ( X , Y ) → Y , Y X + 1 X SCr ( 2 ) / ( C ⋆ ) 2 ≃ � C , I , P | C 3 = I 4 = P 5 = 1 , I 2 C = CI 2 , I = PCP � [Usnich ’08, Blanc ’10] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 35 / 39

  76. The symplectic Cremona group of the plane Let ω = d log X ∧ log Y be the standard holomorphic symplectic form on the 2-torus. CP 2 Cr ( 2 ) = Aut C ( C ( X , Y )) : → ∨ ֒ (( C ∗ ) 2 , ω ) SCr ( 2 ) = { φ ∈ Cr ( 2 ) | φ ∗ ω = ω } : � �� � ∨ � � ( C ⋆ ) 2 , SL 2 ( Z ) , Z / 5 = � P � � � SL 2 ( Z ) = � C , I | C 3 = I 4 = 1 , I 2 C = CI 2 � , P : ( X , Y ) → Y , Y X + 1 X SCr ( 2 ) / ( C ⋆ ) 2 ≃ � C , I , P | C 3 = I 4 = P 5 = 1 , I 2 C = CI 2 , I = PCP � [Usnich ’08, Blanc ’10] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 35 / 39

  77. The symplectic Cremona group of the plane Let ω = d log X ∧ log Y be the standard holomorphic symplectic form on the 2-torus. CP 2 Cr ( 2 ) = Aut C ( C ( X , Y )) : → ∨ ֒ (( C ∗ ) 2 , ω ) SCr ( 2 ) = { φ ∈ Cr ( 2 ) | φ ∗ ω = ω } : � �� � ∨ � � ( C ⋆ ) 2 , SL 2 ( Z ) , Z / 5 = � P � � � SL 2 ( Z ) = � C , I | C 3 = I 4 = 1 , I 2 C = CI 2 � , P : ( X , Y ) → Y , Y X + 1 X SCr ( 2 ) / ( C ⋆ ) 2 ≃ � C , I , P | C 3 = I 4 = P 5 = 1 , I 2 C = CI 2 , I = PCP � [Usnich ’08, Blanc ’10] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 35 / 39

  78. The symplectic Cremona group of the plane Let ω = d log X ∧ log Y be the standard holomorphic symplectic form on the 2-torus. CP 2 Cr ( 2 ) = Aut C ( C ( X , Y )) : → ∨ ֒ (( C ∗ ) 2 , ω ) SCr ( 2 ) = { φ ∈ Cr ( 2 ) | φ ∗ ω = ω } : � �� � ∨ � � ( C ⋆ ) 2 , SL 2 ( Z ) , Z / 5 = � P � � � SL 2 ( Z ) = � C , I | C 3 = I 4 = 1 , I 2 C = CI 2 � , P : ( X , Y ) → Y , Y X + 1 X SCr ( 2 ) / ( C ⋆ ) 2 ≃ � C , I , P | C 3 = I 4 = P 5 = 1 , I 2 C = CI 2 , I = PCP � [Usnich ’08, Blanc ’10] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 35 / 39

  79. The Main Conjecture (somewhat improved form) Conjecture There exists a set-theoretic correspondence K → φ K ∈ SCr ( 2 ) (the symplectic Cremona group of the plane ) such that ω K g , h = CEO g , h [ φ ∗ K N (Π X )] ( ⋆ ) Two (necessary) tweaks: conformal φ K : φ ∗ K ω = α K ω , α k ∈ Z 1 symmetry action on the open string sector: ∆ : S K → S K (cfr: 2 Γ -correspondences for 3-manifolds) (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 36 / 39

  80. What ( ⋆ ) would be f 1 ։ T � { φ ∈ PL ( S 1 ) | Disc ( φ ) dyadic partition, slopes ∈ 2 Z } SCr ( 2 ) [Usnich ’07] (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 37 / 39

  81. What ( ⋆ ) would be f 1 ։ T � { φ ∈ PL ( S 1 ) | Disc ( φ ) dyadic partition, slopes ∈ 2 Z } SCr ( 2 ) [Usnich ’07] 1.0 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1.0 (UoB & CNRS) CS theory and the higher genus B-model Warsaw 2018 37 / 39

Recommend


More recommend