characterizations of deque and queue graphs
play

Characterizations of Deque and Queue Graphs Christopher Auer, - PowerPoint PPT Presentation

| Characterizations of Deque and Queue Graphs Christopher Auer, Andreas Gleiner University of Passau Christopher Auer | Email: christopher.auer@uni-passau.de Slide 1 Introduction and Motivation Table of Contents | Introduction and


  1. | Characterizations of Deque and Queue Graphs Christopher Auer, Andreas Gleißner University of Passau Christopher Auer | Email: christopher.auer@uni-passau.de Slide 1

  2. Introduction and Motivation Table of Contents | Introduction and Motivation Deque Graphs Proper Leveled-Planar Graphs Conclusion and Future Work Christopher Auer | Email: christopher.auer@uni-passau.de Slide 2

  3. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout 0 1 2 3 4 Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  4. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout (0 , 1) 0 1 2 3 4 (0 , 3) Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  5. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout (0 , 1) 0 1 2 3 4 (0 , 3) Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  6. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout 0 1 2 3 4 (0 , 3) Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  7. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout (1 , 2) 0 1 2 3 4 (0 , 3) Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  8. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout (1 , 2) 0 1 2 3 4 (0 , 3) Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  9. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout 0 1 2 3 4 (0 , 3) Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  10. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout (2 , 4) 0 1 2 3 4 (0 , 3) Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  11. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout (2 , 4) 0 1 2 3 4 (0 , 3) Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  12. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout (2 , 4) 0 1 2 3 4 (0 , 3) Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  13. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout (2 , 4) 0 1 2 3 4 (0 , 3) 0 1 2 4 3 Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  14. Introduction and Motivation Example: Stack | ◮ Graph layouts ◮ Undirected graph: G = ( V , E ) ◮ Linear layout π : V → { 0 , . . . , n − 1 } : positioning of the vertices ◮ Example: Stack layout ◮ Strong relationship between graph layouts and planarity (2 , 4) 0 1 2 3 4 (0 , 3) 0 1 2 4 3 Christopher Auer | Email: christopher.auer@uni-passau.de Slide 3

  15. Introduction and Motivation Known Characterizations | Bernhart, Kainen, ’79: A graph is a. . . ◮ . . . stack graph ⇐ ⇒ it is outer-planar Christopher Auer | Email: christopher.auer@uni-passau.de Slide 4

  16. Introduction and Motivation Known Characterizations | Bernhart, Kainen, ’79: A graph is a. . . ◮ . . . stack graph ⇐ ⇒ it is outer-planar Christopher Auer | Email: christopher.auer@uni-passau.de Slide 4

  17. Introduction and Motivation Known Characterizations | Bernhart, Kainen, ’79: A graph is a. . . ◮ . . . stack graph ⇐ ⇒ it is outer-planar 0 0 1 1 4 4 2 2 3 3 Christopher Auer | Email: christopher.auer@uni-passau.de Slide 4

  18. Introduction and Motivation Known Characterizations | Bernhart, Kainen, ’79: A graph is a. . . ◮ . . . stack graph ⇐ ⇒ it is outer-planar 0 0 1 1 4 4 2 2 3 3 0 1 2 3 4 Christopher Auer | Email: christopher.auer@uni-passau.de Slide 4

  19. Introduction and Motivation Known Characterizations | Bernhart, Kainen, ’79: A graph is a. . . ◮ . . . stack graph ⇐ ⇒ it is outer-planar 0 0 1 1 4 4 2 2 3 3 0 1 2 3 4 Christopher Auer | Email: christopher.auer@uni-passau.de Slide 4

  20. Introduction and Motivation Known Characterizations | Bernhart, Kainen, ’79: A graph is a. . . ◮ . . . stack graph ⇐ ⇒ it is outer-planar 0 0 1 1 4 4 2 2 3 3 0 1 2 3 4 Christopher Auer | Email: christopher.auer@uni-passau.de Slide 4

  21. Introduction and Motivation Known Characterizations | Bernhart, Kainen, ’79: A graph is a. . . ◮ . . . stack graph ⇐ ⇒ it is outer-planar ◮ . . . 2-stack graph ⇐ ⇒ it is subgraph of planar graph with a Hamiltonian cycle 0 0 1 1 4 4 2 2 3 3 0 1 2 3 4 Christopher Auer | Email: christopher.auer@uni-passau.de Slide 4

  22. Deque Graphs Table of Contents | Introduction and Motivation Deque Graphs Proper Leveled-Planar Graphs Conclusion and Future Work Christopher Auer | Email: christopher.auer@uni-passau.de Slide 5

  23. Deque Graphs Deque Layouts | ◮ Double-ended queue Christopher Auer | Email: christopher.auer@uni-passau.de Slide 6

  24. Deque Graphs Deque Layouts | ◮ Double-ended queue ◮ Two sides: Head h and Tail t h t Christopher Auer | Email: christopher.auer@uni-passau.de Slide 6

  25. Deque Graphs Deque Layouts | ◮ Double-ended queue ◮ Two sides: Head h and Tail t ◮ Linear I/O layout: ◮ Linear layout π : V → { 0 , . . . , n − 1 } ◮ Input assignment α : E → { h , t } ◮ Output assignment ω : E → { h , t } h t Christopher Auer | Email: christopher.auer@uni-passau.de Slide 6

  26. Deque Graphs Deque Layouts | ◮ Double-ended queue ◮ Two sides: Head h and Tail t ◮ Linear I/O layout: ◮ Linear layout π : V → { 0 , . . . , n − 1 } ◮ Input assignment α : E → { h , t } ◮ Output assignment ω : E → { h , t } ◮ α ( e ) = ω ( e ) : e is a stack edge h t Christopher Auer | Email: christopher.auer@uni-passau.de Slide 6

  27. Deque Graphs Deque Layouts | ◮ Double-ended queue ◮ Two sides: Head h and Tail t ◮ Linear I/O layout: ◮ Linear layout π : V → { 0 , . . . , n − 1 } ◮ Input assignment α : E → { h , t } ◮ Output assignment ω : E → { h , t } ◮ α ( e ) = ω ( e ) : e is a stack edge ◮ α ( e ) � = ω ( e ) : e is a queue edge h t Christopher Auer | Email: christopher.auer@uni-passau.de Slide 6

  28. Deque Graphs Deque Layouts | ◮ Double-ended queue ◮ Two sides: Head h and Tail t ◮ Linear I/O layout: ◮ Linear layout π : V → { 0 , . . . , n − 1 } ◮ Input assignment α : E → { h , t } ◮ Output assignment ω : E → { h , t } ◮ α ( e ) = ω ( e ) : e is a stack edge ◮ α ( e ) � = ω ( e ) : e is a queue edge h t ◮ A deque. . . ◮ . . . can emulate two stacks Christopher Auer | Email: christopher.auer@uni-passau.de Slide 6

  29. Deque Graphs Deque Layouts | ◮ Double-ended queue ◮ Two sides: Head h and Tail t ◮ Linear I/O layout: ◮ Linear layout π : V → { 0 , . . . , n − 1 } ◮ Input assignment α : E → { h , t } ◮ Output assignment ω : E → { h , t } ◮ α ( e ) = ω ( e ) : e is a stack edge ◮ α ( e ) � = ω ( e ) : e is a queue edge h t ◮ A deque. . . ◮ . . . can emulate two stacks ◮ . . . allows queue items Christopher Auer | Email: christopher.auer@uni-passau.de Slide 6

  30. Deque Graphs Linear Cylindric Drawings | 4 3 2 7 6 9 5 0 1 8 Christopher Auer | Email: christopher.auer@uni-passau.de Slide 7

  31. Deque Graphs Linear Cylindric Drawings | 4 3 2 7 6 9 5 0 1 8 0 1 2 3 4 5 6 7 8 9 Christopher Auer | Email: christopher.auer@uni-passau.de Slide 7

  32. Deque Graphs Linear Cylindric Drawings | 4 3 2 7 6 9 5 0 1 8 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Christopher Auer | Email: christopher.auer@uni-passau.de Slide 7

  33. Deque Graphs Linear Cylindric Drawings | 4 3 2 7 6 9 5 0 1 8 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 ◮ A graph is a deque graph ⇐ ⇒ it is linear cylindric planar Christopher Auer | Email: christopher.auer@uni-passau.de Slide 7

  34. Deque Graphs Linear Cylindric Drawings | 4 3 2 7 6 9 5 0 1 8 h h 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 t t ◮ A graph is a deque graph ⇐ ⇒ it is linear cylindric planar Christopher Auer | Email: christopher.auer@uni-passau.de Slide 7

Recommend


More recommend