characterisation of parallel independence in agree
play

Characterisation of Parallel Independence in AGREE-Rewriting Michael - PowerPoint PPT Presentation

Characterisation of Parallel Independence in AGREE-Rewriting Michael Lwe (FHDW Hannover) ICGT 2018, Toulouse June 26, 2018 Contents Partial arrow classifier AGREE-rewriting Gluing construction Residual Parallel independence


  1. AGREE: Local Copies (t, l) ● T L ● x x 𝜃 t l r L K n 17 ICGT 2018

  2. AGREE: Local Copies (t, l) ● T L ● x x 𝜃 t l r L K m ● n m G x x 17 ICGT 2018

  3. AGREE: Local Copies (t, l) ● T L ● x x 𝜃 t l r L K m ● n m n’ G D g x x x x 17 ICGT 2018

  4. AGREE: Global Copies (t, l) ● T L ● x x x 𝜃 t l r L K n 18 ICGT 2018

  5. AGREE: Global Copies (t, l) ● T L ● x x x 𝜃 t l r L K m ● n m n’ G D g x x x x x x 18 ICGT 2018

  6. AGREE: Local Deletion (t, l) ● T L ● x x 𝜃 t l r L K n 19 ICGT 2018

  7. AGREE: Local Deletion (t, l) ● T L ● x x 𝜃 t l r L K m ● n m n’ G D g x x x x 19 ICGT 2018

  8. AGREE: Global Deletion (t, l) ● T L ● x 𝜃 t l r L K n 20 ICGT 2018

  9. AGREE: Global Deletion (t, l) ● T L ● x 𝜃 t l r L K m ● n m n’ G D g x x 20 ICGT 2018

  10. AGREE: Local Addition (t, l) ● T L ● x x 𝜃 t l r L K R 21 ICGT 2018

  11. AGREE: Local Addition (t, l) ● T L ● x x 𝜃 t l r L K R m ● n m n’ p’ G D D g x x x x x x 21 ICGT 2018

  12. Gluing Construction l r L K R m X n G 22 ICGT 2018

  13. Gluing Construction (r, l) ◦ (q, p) = (n, m) ◦ (h, g) l r L K R (PB) (FPC) m u p x y X Z Y n v q (FPC) (PO) G D H g h 22 ICGT 2018

  14. Gluing for DPO-Rewriting l r L K R (PB) (FPC) m u p x y X Z Y n v q (FPC) (PO) G D H g h 23 ICGT 2018

  15. Gluing for DPO-Rewriting Monomorphism l r L K R (PB) (FPC) m u p Isomorphism x y X Z Y n v q Pushout (FPC) (PO) Complement G D H g h 23 ICGT 2018

  16. Gluing for SPO-Rewriting Monomorphism l r L K R (PB) (FPC) m u p Isomorphism x y X Z Y n v q (FPC) (PO) G D H g h 24 ICGT 2018

  17. Gluing for SqPO-Rewriting l r L K R (PB) (FPC) m u p Isomorphism x y X Z Y n v q (FPC) (PO) G D H g h 25 ICGT 2018

  18. Gluing for AGREE-Rewriting l r L K R (PB) (FPC) m u p x y X Z Y n v q (FPC) (PO) G D H g h 26 ICGT 2018

  19. Gluing for AGREE-Rewriting Induced by base rule Monomorphism l r L K R Induced by monic (PB) (FPC) m u p base match x y X Z Y n v q Special (FPC) (PO) monomorphism G D H g h 26 ICGT 2018

  20. Gluing Construction l r L K R (PB) (FPC) m u p x y X Z Y n v q (FPC) (PO) G D H g h 27 ICGT 2018

  21. Gluing Construction l r L K R (PB) (FPC) m u p x y X Z Y n v q (FPC) (PO) G D H g h 27 ICGT 2018

  22. Gluing Construction L K R X Z Y G D H 28 ICGT 2018

  23. Gluing Construction K’’ L K R K’ R’ Z’’ X Z Y Y D’’ G D H H’ 28 ICGT 2018

  24. Gluing Construction K’’ L K R K’ R’ Z’’ X Z Y Z’ Y D’’ G D H D’ H’ 28 ICGT 2018

  25. Gluing Construction K’’ L K R K’ R’ Z’’ X Z Y Z’ Y D’’ G D H D’ H’ Gluing diagrams compose and decompose like pushouts 28 ICGT 2018

  26. Parallel Independence (l, r) (m, n) (p, q) (m’, n’) (g, h) (l’, r’) (g’, h’) (p’, q’) 29 ICGT 2018

  27. Parallel Independence (l, r) Residual? (g’, h’) ◦ (m, n) (m, n) Residual? (p, q) (m’, n’) (g, h) (g, h) ◦ (m’, n’) (l’, r’) (g’, h’) (p’, q’) 29 ICGT 2018

  28. Parallel Independence (l, r) Residual? (g’, h’) ◦ (m, n) (m, n) Residual? (p, q) (m’, n’) (g, h) (g, h) ◦ (m’, n’) (l’, r’) (g’, h’) (p’, q’) 29 ICGT 2018

  29. Parallel Independence (l, r) Residual? (g’, h’) ◦ (m, n) (m, n) Residual? (p, q) (m’, n’) (g, h) (g, h) ◦ (m’, n’) (l’, r’) (g’, h’) (p’, q’) 29 ICGT 2018

  30. Residual g h G D H 30 ICGT 2018

  31. Residual L ● m gh ● m ● g h G D H 𝜃 L m m gh L 30 ICGT 2018

  32. Residual L ● m gh ● m ● g h G D H 𝜃 L m m gh m’ g ◦ m’ = m, h ◦ m’ = m gh L 30 ICGT 2018

  33. Residual m ● ◦ g = m’ ● , m gh ● ◦ h = m’ ● L ● m gh ● m’ ● m ● g h G D H 𝜃 L m m gh m’ g ◦ m’ = m, h ◦ m’ = m gh L 30 ICGT 2018

  34. Residual L ● m gh ● m’ ● m ● g h G D H 𝜃 L m m gh m’ (m’, id L ) pullback of (m, g) and (h, m gh ) L 30 ICGT 2018

  35. Residual L ● x m gh ● m ● G D H g h 𝜃 L m L m gh 31 ICGT 2018

  36. Residual L ● x m gh ● m ● G D H g h 𝜃 L m L m’ m gh g ◦ m’ = m, h ◦ m’ = m gh 31 ICGT 2018

  37. Residual m ● ◦ g ≠ m’ ● , m gh ● ◦ h ≠ m’ ● L ● x m gh ● m’ ● m ● G D H g h x 𝜃 L m L m’ m gh g ◦ m’ = m, h ◦ m’ = m gh 31 ICGT 2018

  38. Residual L ● m gh ● m’ ● m ● g h G D H 𝜃 L m m gh m’ L (m’, id L ) pullback of (m, g) and (h, m gh ) 32 ICGT 2018

  39. Residual L ● m’ ● m ● g h G D H 𝜃 L m m’ L (m’, id L ) pullback of (m, g) and h ◦ m’ = m gh 32 ICGT 2018

  40. Residual g h G D H 33 ICGT 2018

  41. Residual L ● (h ◦ m’) ● m’ ● m ● g 𝜃 L h L G D H m (t, l) ● m’ l K t T 33 ICGT 2018

  42. Residual L ● (h ◦ m’) ● m’ ● m ● g 𝜃 L h L G D H m (t, l) ● m’ l x v (PB) K X Y (PB) t h’ y T w 33 ICGT 2018

  43. Residual L ● (h ◦ m’) ● m’ ● m ● g 𝜃 L h L G D H m (t, l) ● m’ (FPC) l x v (PB) K X Y (PB) t h’ y T w 33 ICGT 2018

  44. Characterising Independence L 1 m 1 L 2 ● L 2 G m 2 𝜃 2 (t 2 , l 2 ) ● l 2 T 2 K 2 t 2 34 ICGT 2018

  45. Characterising Independence Match m 1 for rule 1 has residual after applying rule 2 L 1 at m 2 , only if m 1 1. everything that m 1 needs (locally copies, deletes, or preserves) is neither copied nor deleted (neither L 2 ● L 2 G m 2 𝜃 2 locally nor globally) by rule 2 at match m 2 . (t 2 , l 2 ) ● l 2 T 2 K 2 t 2 34 ICGT 2018

  46. Characterising Independence L 1 m 1 L 2 ● L 2 G m 2 𝜃 2 (t 2 , l 2 ) ● l 2 T 2 K 2 t 2 35 ICGT 2018

  47. Characterising Independence L 1 𝜌 2 L* m 1 𝜌 1 ( 𝜌 2 , 𝜌 1 ) ● L 2 ● L 2 G m 2 𝜃 2 (t 2 , l 2 ) ● l 2 T 2 K 2 t 2 35 ICGT 2018

  48. Characterising Independence L 1 𝜌 2 L* m 1 𝜌 1 ( 𝜌 2 , 𝜌 1 ) ● L 2 ● L 2 G m 2 𝜃 2 (t 2 , l 2 ) ● l 2 id LI (PB) T 2 K 2 t 2 L 1 35 ICGT 2018

  49. Characterising Independence Match m 1 for rule 1 has residual after applying rule 2 L 1 at m 2 , only if 𝜌 2 L* m 1 1. everything that m 1 needs (locally copies, deletes, or 𝜌 1 ( 𝜌 2 , 𝜌 1 ) ● preserves) is neither copied nor deleted (neither L 2 ● L 2 G m 2 𝜃 2 locally nor globally) by rule 2 at match m 2 . (t 2 , l 2 ) ● l 2 2. everything that rule 1 adds is neither (globally) id LI (PB) T 2 K 2 copied nor deleted by rule 2 at match m 2 . t 2 L 1 35 ICGT 2018

  50. Characterising Independence Match m 1 for rule 1 has residual after applying rule 2 add L 1 at m 2 , only if 𝜌 2 L* m 1 1. everything that m 1 needs (locally copies, deletes, or copy (globally) copy (globally) 𝜌 1 ( 𝜌 2 , 𝜌 1 ) ● preserves) is neither copied nor deleted (neither add L 2 ● ≠ L 2 G m 2 𝜃 2 locally nor globally) by rule 2 at match m 2 . (t 2 , l 2 ) ● l 2 2. everything that rule 1 adds is neither (globally) id LI (PB) T 2 K 2 copied nor deleted by rule 2 at match m 2 . t 2 L 1 35 ICGT 2018

  51. Characterising Independence L 1 𝜌 2 L* m 1 𝜌 1 L 2 ● L 2 G m 2 𝜃 2 (t 2 , l 2 ) ● l 2 T 2 K 2 t 2 36 ICGT 2018

  52. Characterising Independence l 1 r 1 r 1 L 1 K 1 R 1 𝜌 2 L* m’’ 2 n’ 1 m 1 𝜌 1 g 1 L 2 ● L 2 G D 1 m 2 𝜃 2 (t 2 , l 2 ) ● l 2 m’ 2 T 2 K 2 t 2 36 ICGT 2018

  53. Characterising Independence (r 1 ◦ m’’ 2 , 𝜌 1 ) ● l 1 r 1 r 1 L 1 K 1 R 1 𝜌 2 L* m’’ 2 n’ 1 m 1 𝜌 1 g 1 L 2 ● L 2 G D 1 m 2 𝜃 2 (t 2 , l 2 ) ● l 2 m’ 2 T 2 K 2 t 2 36 ICGT 2018

  54. Characterising Independence (r 1 ◦ m’’ 2 , 𝜌 1 ) ● l 1 r 1 r 1 L 1 K 1 R 1 𝜌 2 L* m’’ 2 n’ 1 m 1 𝜌 1 g 1 L 2 ● L 2 G D 1 m 2 𝜃 2 id RI (t 2 , l 2 ) ● l 2 m’ 2 T 2 K 2 t 2 (PB) R 1 36 ICGT 2018

  55. Characterising Independence (r 1 ◦ m’’ 2 , 𝜌 1 ) ● Match m 1 for rule 1 has residual after applying rule 2 l 1 r 1 r 1 L 1 K 1 R 1 at m 2 , if and only if 𝜌 2 L* m’’ 2 n’ 1 m 1 1. everything that m 1 needs (locally copies, deletes, or 𝜌 1 g 1 preserves) is neither copied nor deleted (neither L 2 ● L 2 G D 1 m 2 𝜃 2 locally nor globally) by rule 2 at match m 2 . id RI (t 2 , l 2 ) ● l 2 m’ 2 2. everything that rule 1 adds is neither (globally) T 2 K 2 copied nor deleted by rule 2 at match m 2 . t 2 (PB) R 1 36 ICGT 2018

  56. Characterising Independence (r 1 ◦ m’’ 2 , 𝜌 1 ) ● l 1 r 1 L 1 K 1 R 1 𝜌 2 L* m’’ 2 n’ 1 m 1 𝜌 1 ( 𝜌 2 , 𝜌 1 ) ● g 1 L 2 ● L 2 G D 1 m 2 𝜃 2 id RI (t 2 , l 2 ) ● l 2 m’ 2 id LI (PB) T 2 K 2 t 2 (PB) L 1 R 1 37 ICGT 2018

  57. Conclusion AGREE-rewriting is instance of the Gluing Construction! There is a precise notion of residual! Gluing and mutual residuals provides Church-Rosser! Residuals can be characterized syntactically! ——————————————————————— Are global effects useful? 38 ICGT 2018

Recommend


More recommend